

Version 10.0a | Last Updated 2021-07-19

Copyright ©2004-2021 NetBrain Technologies, Inc. All rights reserved.

NetBrain® Integrated Edition 10.0

Feature Intent Template

Tutorial

Contents

1. Introduction .. 4

2. FI Template Main Execution Flow .. 7

3. Understanding Feature Decode using YAML File .. 9

3.1. Test Feature Decode Result using Feature Intent Template .. 12

3.2. Line Pattern Match Logic ... 14

3.3. Device Qualification Basics ... 15

4. Understanding Different Components of FIT .. 17

4.1. Sub Feature Intent Introduction ... 17

4.2. Generate FI Group for Multiple Devices .. 20

4.3. Resource Generation Logic ... 21

4.4. Reference Variables of Different Levels .. 24

5. Create Network Intent ... 27

5.1. Generate Default Network Intent .. 30

5.2. Create Network Intent Directly ... 32

5.2.1. Referencing Visual Parsers .. 36

5.2.2. Cross Device Analysis in Network Intent ... 37

5.3. Using Network Intent Template ... 40

5.3.1. Define Network Intent Parameters in Feature Intent Template .. 43

5.4. Generate Network Intents via NI Template .. 46

6. Building Intent-based Automation via Feature Intent Template ... 47

6.1. Creating Flash Probe .. 47

6.1.1. Creating Flash Probe for Interface Variable Check .. 51

6.1.2. Creating Flash Probe using Sub FI variables ... 54

6.2. Install Network Intent into Flash Probe ... 57

6.3. View Triggered Intent Results ... 59

7. Create/Update Data View Templates .. 61

7.1. Creating Data View Template based on FIG ... 64

Version 10.0a | Last Updated 2021-07-19

Copyright ©2004-2021 NetBrain Technologies, Inc. All rights reserved.

8. Create/Update Runbook Template ... 66

8.1. Adding DVT Node into RBT ... 67

8.2. Adding Qapp Node into RBT ... 68

8.3. Adding CLI Node into RBT ... 68

9. Create/Update Guidebook ... 70

9.1. Adding DVT Node into Guidebook ... 71

9.2. Adding Hypothesis into Guidebook ... 71

10. Scheduling Feature Intent Template ... 73

11. More Functions Provided with Feature Intent Template .. 74

4 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

1. Introduction

Network Troubleshooting, which requires enormous knowledge, individual efforts and team collaborations,

could be demanding and time-consuming. NetBrain’s reference workflow with the new feature, intent-based

automation, aims to automate every incident ticket. The automation feature includes triggered automation

and interactive automation. The key components are listed below:

1) Adaptive monitoring probes

2) Dynamic Map (Enhanced with DVT)

3) Triggered runbook execution

4) Triggered NI execution

5) Interactive Runbook execution

6) Interact NI execution

7) Guidebook execution (which consists DVT, RBT and NI)

However, building the automation system is not a simple matter with the following challenges:

• Network Intent is device-based automation for end users. As it is designed purposefully, end users

can easily utilize it. Also, end uses can define it with deep automation analysis logic, which can be

applicable in any scenarios. But it is difficult to be applied to other devices with similar intents.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 5

• A better way needs to be found for the entire intent-based automation (adaptive monitoring,

decision tree) to scale to a large network and to keep up with the network change (intent change)

in the meantime.

To overcome the challenges, the engineers need to build the intent-based automation device-by-device, and

intent-by-intent, then view the results from the decision tree. It is quite difficult to build the intent-based

automation for a large network with complex technologies.

Feature Intent Template is aiming to resolve the problems mentioned above with the following key

characteristics:

• Decode network features using line pattern for accurate device feature match.

• Scale intent-based automation to the entire network with the device matched.

• Maintaining the intent by executed periodically.

Feature Intent Template defined inside YAML-Format Feature Intent Definition File (FID file) is a set of

automation technology to define NetBrain automation across the entire network.

With the Config line pattern, various network technologies can be decoded from device configuration files.

Furthermore, the targeted device can be matched, and the key parameters can be stored in the line pattern

for future use. This will help to identify across the entire network which devices are running certain network

technologies (BGP, QOS, Multicasting etc.) and create the related automation resources in NetBrain’s system

(Network Intent for BGP design, Flash Probe for BGP flapping check etc.). Execution methods can be further

defined as either triggered by the system or interactively executed by users.

6 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

The main purpose of the feature intent template is to decode network feature and build/install automations

across the entire network to support the reference workflow.

In this tutorial, we will first introduce the Feature Intent main flow. Then, move on to the feature decode

concept and creating default networking intent. After that we’ll show how the system can create network

intent based on network intent template. And further we’ll explore how the entire intent-based automation

functions can be built via feature intent template.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 7

2. FI Template Main Execution Flow

In this chapter, we’ll briefly illustrate how feature intent template works in your environment. Feature Intent

Template can be used in the following scenarios:

• NetBrain Service Engineer: NetBrain’s service engineer can leverage the Feature Intent Template to

create automation based on the needs and apply the feature intent template easily to other customers

if needed.

• Customer DevOp Engineer: Customers’ DevOp engineers can create Feature Intent Templates and

apply the Feature Intent Template to the current network.

The following diagram illustrates how the Feature Intent Template works in your environment and support

your network consisting of multiple network devices with their corresponding configuration files. NetBrain will

further create data model and part of the data will be stored via GDR properties.

With all the information, you can define the Feature Intent Template which includes the two parts:

1) Feature Intent Definition: This is the main component that defines how device config should be

matched with the defined line patterns. Devices along with their configs and GDRs will be

evaluated by the feature intent definition.

8 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

2) Automation Definition: This part defines what automation assets need to be created/installed

based on the matched feature intent including network intent/flash probe/triggered automation,

etc.

A network including multiple devices will match devices with the network feature specified within the Feature

Intent Template and a set of automation assets will be created accordingly.

Feature Intent Template builds the data model group up from the raw configuration files, and it is not

intended to be created by end users. End users should only run the Feature Intent Templates, see the

generated results and use the created automations.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 9

3. Understanding Feature Decode using YAML File

Network Troubleshooting requires deep understanding of different network technologies (i.e. ,HSRP, QOS or

BGP) configured on each device. Based on different network features, the knowledge and automation needed

for further troubleshooting may vary. To automate the automation assets required for troubleshooting, the

key and fundamental is to understand network features. This is how feature intent template decode network

features.

By looking into the configuration files of devices, we use the line pattern concept to find the matched devices

for that specific feature. One simple example is to look for whether BGP routing protocol is configured on

Cisco IOS device by searching for the following config lines:

router bgp 2

 neighbor 10.10.10.10 remote-as 1

Each of the line contains two types of words, one is network keyword and the other one is variable. If we

take the first line as an example, router and bgp are network keywords while 2 is a variable. As different

router may configure different routing process, we need to combine the keyword with the variable to search

for whether BGP is configured for specific devices. By combining keywords and variables into a single line, we

have created a unique line pattern that serves as the feature decode unit. In NetBrain’s implementation, the

variable is represented by $<variable type>:<variable name>, so the line pattern that could be used to find

the above configuration file lines are:

router bgp $num:bgp_as

 neighbor $ip:neighbor_ip remote-as $num:remote_as_number

Since the BGP number here is an integer, we’ll need to define the variable type as number (integer or float),

abbreviated as num. IP address is a built-in variable type in NetBrain, so you can use it to represent the IP

address. Remote-as number can be defined as num as well.

Must-have Line and Optional Line

The configuration for a specific network technology varies and it’s not always the same. To use the line pattern

to find the maximum number of matches for a specific feature, you can leverage the must-have line and

optional line concept to tag your line pattern. Let’s take the following configuration file snippet as an example:

interface GigabitEthernet0/21

description HSRP-GROUP

no switchport

ip address 192.168.2.1 255.255.255.0 secondary

ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

standby 1 priority 150

10 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

In order to find the device with the HSRP configured and match as many configlets as possible, we will need to

define the following lines as must-have lines:

interface GigabitEthernet0/21

ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

The above must-have lines are the key line patterns which determine whether the device has the HSRP

configured. You may or may not have the priority field configured by standby group, therefore you can

configure the following line as an optional line.

standby 1 priority 150

To specify whether a line is must-have or optional, you can use the M or O as flap ahead of the line patterns.

Putting them together, you’ll have the following line pattern to match devices.

M: interface $str:intf

M: ip address $ip:ip_address $ip:ip_mask

M: standby $num:standby_group ip $ip:standby_ip

O: standby $num:standby_group2 priority $num:standby_value

Note: Only devices that include all the must-have lines sequentially will be deemed as a match, so using the

optional line here can help you match devices with or without priority defined for standby group. To match the

devices that have priority explicitly defined, you will need to make the last line as must-have line.

Since the default behavior of line property is a must-have line, you can leave the must-have lines untagged

and the system will recognize them as must-have. The below pattern means the first three lines are must-have

lines and the last one is an optional line.

 interface $str:intf

 ip address $ip:ip_address $ip:ip_mask

 standby $num:standby_group ip $ip:standby_ip

O: standby $num:standby_group2 priority $num:standby_value

The configuration must match the line pattern definition sequentially to be identified as a match, if any line of

the configurations doesn’t match the defined line pattern, it will not be considered as a match. The following

modified configlet won’t be considered as a match for the defined line pattern as the lines cannot match the

exact order.

interface GigabitEthernet0/21

standby 1 ip 192.168.1.100

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 11

ip address 192.168.1.1 255.255.255.0

Organizing Line Pattern into Different Groups

With the exact line pattern match rule by order, sometimes you will need to find repetitive lines for certain line

patterns to find all the matched config lines. To support grouping several lines into a unique matching unit, we

introduced the group concept to better match device config files. The previous defined line pattern can be

recognized as single group and we can give it a simple group name group1 to indicate its uniqueness:

Group1:

M: interface $str:intf

M: ip address $ip:ip_address $ip:ip_mask

M: standby $num:standby_group ip $ip:standby_ip

O: standby $num:standby_group2 priority $num:standby_value

By grouping these line patterns together, all interfaces with hsrp configured will be identified and extracted.

Another use case is to divide your line patterns into different groups so each group can be used as a unit to

match separately. For example, you want to find OSPF configuration files for Cisco devices that contain

interfaces with OSPF configured, the line pattern will look like below:

Group1:

interface GigabitEthernet2/1

 ip address $ip:ip1 $ip:ip2

 ip ospf authentication-key 7 011208034E18

 ip ospf network point-to-point

router ospf 1

 router-id $str:router_id

 passive-interface default

 no passive-interface GigabitEthernet2/1

 network 10.41.1.64 0.0.0.1 area 0

 network 10.41.2.0 0.0.0.255 area 0

 maximum-paths 2

As the previous rule stated, if you put all these lines into a single group, NetBrain will search through the

configuration lines for a match. Therefore, a configuration file that may include multiple OSPF interfaces

configured may only be matched once. In order to support this case, you can use the group logic to divide the

line pattern into different OSPF groups as below:

Group1:

12 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

interface GigabitEthernet2/1

 ip address $ip:ip1 $ip:ip2

 ip ospf authentication-key 7 011208034E18

 ip ospf network point-to-point

Group2:

router ospf 1

router-id $str:router_id

passive-interface default

no passive-interface GigabitEthernet2/1

network 10.41.1.64 0.0.0.1 area 0

network 10.41.2.0 0.0.0.255 area 0

maximum-paths 2

By dividing the line patterns into two different groups, NetBrain will search for the exact match for each group

separately, so a configuration file that includes multiple interfaces can quickly match the group1 definition and

the global OSPF configuration.

Note: The sequence of the groups doesn’t matter, so if the defined pattern starting from group1 then group2, while

the real configuration file starts with group2 and then group1, the device will still be recognized as a match.

3.1. Test Feature Decode Result using Feature Intent Template

With the basic line pattern match rules, as explained previously, we can test the match result for certain

devices. From the NetBrain end user page, opening the feature intent template, you can easily create a new

feature intent template. NetBrain has populated a lot of sections in the default feature intent template but you

don’t need to worry about them at this stage.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 13

We can use the default settings and only modify the match_rules section to add the line patterns as explained,

then group the line patterns into different groups if needed.

After adding the line patterns, click Validate YAML to verify whether the YAML format and content are correct.

Fix any possible errors based on the error messages shown below until you see no errors.

Then you can select the Test Device Config Match to test whether a device is recognized as a match. If yes, you

can see what configuration file lines are matched. Click at the top right corner to navigate to

previous/next matched configuration lines.

14 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

This function can help you quickly determine whether the defined line pattern matches with specific devices,

as a result you can modify the line pattern effectively based on the results.

Note: The configuration file is retrieved from the current baseline.

3.2. Line Pattern Match Logic

 While there are a lot of detailed matching rules, we will not cover all of them in this tutorial. We will focus on

the important logic.

Repetitive Matching

You will often see repetitive lines within a real configuration files, such as ACL configuration for Cisco devices.

As it’s impossible to define the exact line patterns for the repetitive contents, we’ll need to use one single line

pattern to match all repetitive contents. Let’s take the following configlet as an example:

In the above example, as you have one ACL configured with multiple statements, in order to match all these

access-list, instead of stating 5 repetitive line patterns, you could simply use the following line pattern to

match all the contents listed:

 access-list $num:acl_id permit $ip:ip_addr

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 15

Note: The keyword used to specify the repetitive matching behavior is “R”. It is the default value and can be

omitted. Use the keyword “S” to match the first line only.

Note: Repetitive matching only works for non-first line of the line pattern. As if the line pattern appears in the first

line of the line pattern, it will be used as the key to set the matched lines into different groups instead of all

repetitive lines within a single group.

Fuzzy Matching

There are two types of line pattern matching method: exact match and fuzzy match. Exact match is relatively

straightforward, meaning all the defined keywords and variables within a line pattern need to be precisely

matched. Fuzzy matching means the line pattern only requires the first part of a real config line to be

matched.

 Note: NetBrain’s default line pattern behavior is fuzzy matching.

With the fuzzy matching, you can use a universal line pattern to match two or more different configuration

lines. Let’s use a simple example below to explain the concept:

We have the line pattern ip address $ip:ip1 $ip:ip2 attempting to match the following config line:

ip address 10.10.10.10 255.255.255.0 secondary

Since the default behavior is fuzzy matching, this will also be recognized as a match. In case you want the line

pattern to be precisely match and doesn’t want to use fuzzy matching, you can modify the matching rule to

exact matching so this line will no longer be recognized as a match. To mark a line pattern as exact matching,

you can mark the line pattern with “E” flag in the beginning of the line:

 E: ip address $ip:ip1 $ip:ip2

If the line needs to be marked both optional line and exact matching, mark the optional line and then the

exact matching, an example is shown as below:

 OE: ip address $ip:ip1 $ip:ip2

Note: First line of each group does not support fuzzy matching by default. If the neither F flag nor E flag is specified,

exact match will be performed by default.

Note: F flag is required to specified in order to support fuzzy match.

Note: If both F/E flags are written at the same time, they will be treated as F and fuzzy match will be performed.

3.3. Device Qualification Basics

Device feature decoding through configuration files is a powerful tool to quickly decode the network features

from the network devices. However, it requires massive calculation across all the devices in the calculation

scope. In some cases, you may need a light-weight method to quickly find devices. The following example

16 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

illustrates how you can leverage the device properties that have already been visualized by NetBrain, or use

the regex as a qualification to achieve this goal.

Qualification section allows you to use all device GDR properties to filter the related devices. For a full list of

supported properties, refer to Qualification Properties and Condition.

regexs section allows you to define one or more conditions to match related devices. mregex is supported in

this section.

Using the qualification and regex rule as preliminary filters can significantly improve the accuracy and

performance.

In some use cases you may only need to define the qualification and regex match without using the config line

pattern for feature decoding, which is totally fine, but you’ll need to make sure you have at least one of the

three matching methods defined in order for the system to match devices and execute properly.

https://www.netbraintech.com/docs/ie100a/help/index.html?qualification-properties-and-condition.htm

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 17

4. Understanding Different Components of FIT

In the previous chapter, we explained the feature decode basics and how you can use the line patterns to

match the configlet from configuration files. In this chapter, we will explain how you can divide the feature

intent into sub-feature intent (SubFI for short) then generate default network intent with the sub-feature

intent.

4.1. Sub Feature Intent Introduction

Feature Intent stands for all the configuration lines matched for line patterns. However, most of the times you

could match a lot of repetitive patterns and you do want to divide the Feature Intent into sub Feature Intent

for further network intent creation. Let’s take a simple example for the line patterns created for HSRP feature:

 patterns:

 group1: |-

 M: interface $str:intfName1

 M: ip address $ip:ip1 $ip:mask1

 M: standby $str:standbyName1 ip $ip:ip2

 O: standby $str:standbyName2 priority $str:priority

The above pattern is created for HSRP feature match to match devices that have HSRP configured on its

interfaces, but one interface may have multiple HSRP groups configured, each with its own ip address and

priority. The following example shows a real configuration files with two HSRP groups configured on a single

interface and we need to split the groups into two different network intents.

interface GigabitEthernet0/21

 description HSRP-GROUP

 no switchport

 ip address 192.168.2.1 255.255.255.0 secondary

 ip address 192.168.1.1 255.255.255.0

 udld port aggressive

 standby 1 ip 192.168.1.100

 standby 1 priority 150

 standby 1 preempt

 standby 2 ip 192.168.2.100

 standby 2 preempt

18 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

!

In order to divide different HSRP group into different sub Feature Intent and further create network intent

based on certain HSRP group, we can divide the feature intent into SubFIs based on the following parameter in

YAML:

• Split_keys: A line pattern could match multiple config line instances in the configuration file, and thus

some line pattern variables may have multiple possible values. Defining variable here will make sure

that variable only has one instance value in the subFI.

In the above sample, since we want to split the feature intent by group names, we can specify the split_keys

as follows:

 split_keys: # variable signature concept, optional

 group1: [$intfName1, $standbyName1]

By defining the spit_keys, assuming we only have this interface with the HSRP configured, the subFIs we get

from the end results is:

SubFI Content

First SubFI
interface GigabitEthernet0/21
 ip address 192.168.2.1 255.255.255.0 secondary
 ip address 192.168.1.1 255.255.255.0
 standby 1 ip 192.168.1.100
 standby 1 priority 150
 standby 1 preempt

Second SubFI
interface GigabitEthernet0/21
 ip address 192.168.2.1 255.255.255.0 secondary
 ip address 192.168.1.1 255.255.255.0
 standby 2 ip 192.168.2.100
 standby 2 preempt

 Note: The line patterns for interface configuration will be shown as the same in each for the subFIs.

interface GigabitEthernet0/21

 ip address 192.168.2.1 255.255.255.0 secondary

 ip address 192.168.1.1 255.255.255.0

Note: If you don’t define the $standbyName1 as split_keys, you will only have 1 Feature Intent/SubFI and the

content is shown as below:

SubFI Content

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 19

First SubFI
interface GigabitEthernet0/21
 ip address 192.168.2.1 255.255.255.0 secondary
 ip address 192.168.1.1 255.255.255.0
 standby 1 ip 192.168.1.100
 standby 1 priority 150
 standby 1 preempt
 standby 2 ip 192.168.2.100
 standby 2 preempt

Note: Standby group 2 is also matched here as a result of group stacking feature.

Use Relation to group line patterns into SubFI

The previous example only contains one group in the pattern field, in case you have multiple groups in the

pattern, and you want to group them together, you will need to have the relation defined.

Relation: relation is used to filter and keep the SubFI matching the relation definition, the only function you

can use is Equals($var1, $var2) which means they should be the same.

relation: Equals($fi.intfName1, $fi.intfName2) && Equals($fi.ip2, $fi.ip3)

In case you may have multiple groups defined within the pattern:

 patterns:

 group1:

 group2:

We’ll skip the line patterns here to illustrate the concept, both group1 or group2 could find multiple matches

within a configuration files. We’ll mark the match as group1.1, group1.2 … group1.m for group1, group2.1,

group2.2… group2.n for group2.

For the subFIs to be generated, by default there would be m*n subFIs by default if there’s no rule or relation

defined. By defining the relation using Equals($group1var, $group2var), we will only keep the SubFIs that

match our definition.

The output value type of relation expression must be boolean.

Note: Besides the function we explained here, you can also define your relationship by expression. The sample

below is how you can define the same interface name as the relationship to achieve the same function.

$fi.intfName1 == $fi.intfName2

Setting generating SubFI Flag

By default if you use multiple groups or define the split_keys, NetBrain will generate multiple SubFIs

according to your definition. But in some cases even if you find all related configlets, you still want to generate

a single Feature Intent instead of multiple subFIs, in this case you can use the merge_groups flag:

 merge_groups: ["groupX"]

20 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

You can define whether you want to create one instance for a single group for multiple groups. If you want all

groups to be generated as a single Feature Intent, list all group names here so the system will only generate

one single FI.

4.2. Generate FI Group for Multiple Devices

Once we have generated the FI and SubFIs for multiple devices, we’ll need to group them together to generate

FI group. FI group contains a couple of devices with network relationship, a few samples are provided as

below:

• HSRP pair which includes active device and the standby device.

• ASA cluster which includes two ASA devices.

FI group can be recognized automatically to divide devices into different clusters based on the network

feature, and it is the equivalence of network intent.

To generate FI group across multiple devices, we must find unique characteristics for these devices. From a

networking perspective, it can be easily explained by:

• HSRP pair of devices share the same virtual IP address and the primary device/secondary devices are

within the same subnet.

• Devices within an ASA cluster share the same IP address.

The unique characteristics of each device to generate FI group is denoted with the “eigen” variables, identified

with the following statements:

 eigen_variables:

 - name: crossRelationKey

 expression: expression: Combine($standbyName1, Str(IP($fi.ip1, $fi.mask1)))

 - name: site

 expression: $device.GetSiteName()

There are different ways to define the eigen variable expression:

1. SubFI variable: Use the SubFI variable directly if you want to use the SubFI variable extracted for eigen

variable.

2. Function calls: In case you want to group several SubFI variables, you can use the function call to

merge several SubFI variables into a new variable. In the above case, we used the combine() function

which is designed to combine several variables into a new one. As we want to make sure the FI group

we are dealing with should have the same IP address as the same HSRP group. We don’t want to mix

different HSRP groups into a single FI group.

3. NetBrain’s GDR properties: A lot of NetBrain’s buit-in properties can be used in eigen variable for

verification purposes. In this case, if you have different sites that may have the same HSRP ip address

or HSRP group, you’ll probably want to differentiate these devices by further criteria. Here we use the

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 21

device.site property to ensure that the same physical container site does not have same HSRP ip

addresses.

You can use one or more eigen variables for device clustering. One of key eigen variables can be for cross

device grouping and the others for complementary verification. The eigen variable for cross device grouping is

denoted with the cross_relation section:

cross_relation:

group_by: $crossRelationKey

fi_qualification: $site!=null

group_type: ExactMatch

By using the cross relation key, we are grouping the SubFIs into FI group. The system will use the group_by

field to identify SubFIs that have the same eigen variables and group them together.

The fi_qualification field can be used to further filter unwanted SubFIs based on eigen variables. In this

case, we only want to generate FI group, if the devices are within the site that we created. And we don’t want

to generate FI group for devices that we haven’t allocated to certain sites as that may introduce inaccuracy. We

can use the $site as the qualification to filter devices that don’t belong to any site.

The last one group_type define the method to group devices into the same FI group, and there are three

types:

1. Match: Eigen variable in this field needs to be the same, please note in case eigen variable may contain

array includes multiple values, and it only requires single value to be matched between different

devices to be recognized as a match.

2. ExactMatch: This is the default type and the eigen variable in this field needs to be precisely the same,

so SubFIs can be grouped into a single FI group. This includes the situation where you use the

combine() function to combine several eigen variables together, all eigen variables value need to be

the same to be grouped into a single FI group. In case eigen variable may contain array that includes

multiple values, all items within the eigen variable must be matched so different devices will be further

grouped into a single FI group.

3. Contain: there are cases that you may want to group subFIs together if the eigen variable contain the

same eigen variable value, and they don’t need to be the same. A simple use case is one P device has

several BPG neighbors to the PE devices and you want to group them into a single FI group. The eigen

variable is defined as the bgp neighbor IP address, while the bgp neighbor IP address is defined in a

list which contains all eigen variable value of all PE devices.

4.3. Resource Generation Logic

From the last two sections, we have explained the logic for Sub FI and FI Group, which belong to single device

and multiple devices respectively. Based on the feature decode results, NetBrain will further generate

automation resources and each automation resource has its own rule based on different feature decode

results.

22 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Let’s use the following results as an example: suppose we have one single Feature Intent Template to run

against 2 devices with HSRP configurations. Based on the feature decode definition, we will be able to get the

following components with sample data:

Terminology Explanation Sample1(HSRP Case)

Line Pattern
Used to express certain network features and

further based on this feature to match configlet

in devices.

M: interface $str:intfName1
M: ip address $ip:ip1
$ip:mask1
M: standby $str:standbyName1
ip $ip:ip2
M: standby $str:standbyName2
priority $str:priority

FI (Feature

Intent)

Stands for all configlets matched from

configuration files based on line patterns for a

single device. May include one or more SubFIs

Device: US-BOS-SW1

interface Vlan100
 ip address 10.8.1.2
255.255.255.240
 standby 1 ip 10.8.1.1
 standby 1 priority 90
 standby 2 ip 10.8.1.8
 standby 2 priority 105
interface Vlan101
 ip address 10.8.1.18
255.255.255.240
 standby 1 ip 10.8.1.17
 standby 1 priority 105

SubFI (Sub

Feature Intent)

One instance of repetitive patterns extracted

from feature intent. Used as an individual

automation analysis unit. Created with grouping

and split-keys.Use Case: Need automation

creation/analysis logic based on different

configlets of FI. For example, a single device

configured with different HSRP groups may

assume different roles (active/standby) for each

of its group, and you want to create different

automation logic based on its active/standby

status.

Device: US-BOS-SW1SubFI1
interface Vlan100
 ip address 10.8.1.2
255.255.255.240
 standby 1 ip 10.8.1.1
 standby 1 priority 90
SubFI2
interface Vlan100
 ip address 10.8.1.2
255.255.255.240
 standby 2 ip 10.8.1.8
 standby 2 priority 105
SubFI3
interface Vlan101
 ip address 10.8.1.18
255.255.255.240
 standby 1 ip 10.8.1.17
 standby 1 priority 105

FIG (Sub

Feature Intent

Group)

A cluster of devices with each of their SubFI

based on their common network

characteristics (represented by Eigen

Variables)Samples:

• HSRP pair of devices they share the

same virtual IP address, and the

primary device/secondary devices are

within the same subnet.

FIG1:Device: US-BOS-SW1
interface Vlan100
 ip address 10.8.1.2
255.255.255.240
 standby 1 ip 10.8.1.1
 standby 1 priority 90
Device: US-BOS-SW2
interface Vlan100
 ip address 10.8.1.3
255.255.255.240
 standby 1 ip 10.8.1.1

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 23

• Devices within an ASA cluster share the

same cluster IP address.

• Devices with same BGP as number

clustered into a unique FI Group.

 standby 1 priority 105
FIG2: Device: US-BOS-SW1
interface Vlan100
 ip address 10.8.1.2
255.255.255.240
 standby 2 ip 10.8.1.8
 standby 2 priority 105
Device: US-BOS-SW2
interface Vlan100
 ip address 10.8.1.3
255.255.255.240
 standby 2 ip 10.8.1.8
 standby 2 priority 90
FIG3: Device: US-BOS-SW1
interface Vlan101
 ip address 10.8.1.18
255.255.255.240
 standby 1 ip 10.8.1.17
 standby 1 priority 105
Device: US-BOS-SW2
interface Vlan101
ip address 10.8.1.19
255.255.255.240
standby 1 ip 10.8.1.17
standby 1 priority 110

Eigen Variable
Used for FIG creation logic. Defined via subFI

variables. One Eigen variable (cross-relation

key) is used to group subFIs while other Eigen

variables can be used for further analysis.

eigen_variables:
- name: crossRelationKey
expression:
Combine($standbyName1,
IP($ip1, $mask1).GetSubnet())

Cross-relation

Key

Used to group subFIs into FI group. subFIs with

the exact value of cross-relation key will be

grouped into a unique FI group.

cross_relation:
 group_by:
$crossRelationKey

The automation will be created based on the following components:

• FIT (Feature Intent Template): this means the resource are generated based on the feature intent

template. A single feature intent template may generate multiple FIs and FIGs for multiple devices, but

some resources are generated only based on the single Feature Intent Template being used, no matter

how many different subFIs or FIGs have been generated.

The followings are a few sample resources that can be generated based on FIT:

o Schedule DVT/Parser Tasks

o Golden Baseline Definition

o DVT/Runbook Template configured based on FIT level.

o Guidebook configured based on FIT level.

• SubFI: this means the resources are generated based on the sub Feature Intent calculated for each

device, when a single device has multiple SubFIs, the following resources can be generated based on

each SubFI that has been created:

o Flash Probe

o Schedule CLI Command

24 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

• FIG: this means the resources are generated based on the calculated FI group. When a FIT runs against

devices and generate multiple FIGs, the following resources can be further generated based on each

FIG that has been created:

o Network Intent

o Guidebook configured based on FIG level

o DVT/Runbook Template configured based on FIG level

We will introduce examples on how these resources are generated based on different levels. The following

diagram gives you a high-level view of how different automations can be generated based on different

resources:

4.4. Reference Variables of Different Levels

As discussed, you can use line patterns to decode features for devices and reference variables in different

automation assets. Now it’s time to take a look at different types of variables you can use.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 25

We know that you can define variables within line patterns and these variables are called line pattern

variables. You can use them by including the FI as prefix.

The following sample shows line patterns used to match interfaces with HSRP configuration with variables

defined:

group1: |- #ss

 M: interface $str:intfName1

 M: ip address $ip:ip1 $ip:mask1

 M: standby $str:standbyName1 ip $ip:ip2

 M: standby $str:standbyName2 priority $str:priority

In order to use CLI commands that include the interface names, we can use the following statement to

reference the interfaces that are matched:

 - show standby interface {$fi.intfName1}

The same format also applies to eigen variables.

The following sample shows how you can define an eigen variable:

 eigen_variables:

 - name: crossRelationKey

 expression: Combine($fi.standbyName1, IP($fi.ip1, $fi.mask1).GetSubnet())

In order to use these variables, you will need to use $fi as prefix to reference these variables.

 cross_relation: group_by: $fi.crossRelationKey

Both line pattern variables and eigen variables can be recognized as SubFI level variables and you will need to

reference these variables by using $fi as prefix. All the supported variables are listed as below:

Variable

Level

Variable Source Reference Prefix Sample

SubFI
• Line Pattern Variable

• Eigen Variable $fi $fi.bgp

Device Device GDR variable $device $device.name

Interface Interface GDR variable $intf $intf.name

FIG Built-in variables in FIG $fig
$fig.crossRelationHash
$fig.deviceNamesStr

26 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

NI NI role variables defined in NI $ni $ni.roleVariable2

We will cover samples of how to use them in the next few chapters.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 27

5. Create Network Intent

Network Intent is device-based automation, allowing you to define the desired status for a couple of devices

(usually devices that have direct relationships from a network perspective)from configuration files and CLI

commands, and also define the alert logic to check if the desired status is violated. For more network intent

details, please refer to the document: Network Intent Tutorials.

Network intent may include very complex automation logic of defining how to check the desired status. It may

only include the basic configlets and CLI commands without automation logic, which is also known as the

default Network Intent.

The configuration files decoded can be used to fulfill the configlet displayed in the network pane, as well as the

configlet stored in network intent detail pane if there’s no automation logic defined for the network intent.

We can also define the show command within the YAML file to generate CLI command used in Network Intent.

Defining CLI Command in YAML File

You can also define the show commands for feature verification. And the CLI command will be passed on to

the network intent CLI command when the default network intent is created based on the feature intent. To

define the CLI command section, simply put the CLI commands in it. Then, the CLI commands will be used for

the HSRP check, as shown below:

 match_rules:

 patterns:

 group1: |- #ss

 M: interface $str:intfName1

 M: ip address $ip:ip1 $ip:mask1

 M: standby $str:standbyName1 ip $ip:ip2

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

28 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 M: standby $str:standbyName2 priority $str:priority

 commands:

 - show standby

 - show standby brief

 - show standby interface {$fi.intfName1}

 - show standby interface {$fi.intfName1} {$fi.standbyName1}

You can see that not only the general CLI commands without parameters can be used here. You can also use

the CLI commands with the parameters referenced from the line patterns. In the above example, we use the

show standby interface {$intName1} command.This actually means from the configuration files, we use the

line pattern to match the interfaces with the HSRP configuration, then we only check the interface HSRP

status for these interfaces. By specifying parameters used in line pattern, we can significantly improve the CLI

command accuracy for future use.

Before getting into the details of using feature intent template to create network intent with automation logic,

we expect you have the basic understanding of network intent components and its various automation logic

basics; please refer to Network Intent Tutorial if you need to get familiar with these concepts.

The concept of using Feature Intent Template to create much more network intents based on the existing

network intent is simple. As network intent is device-based automation, you will need to select specific devices

and then define the network intent automation. So, if you have a lot of devices with the similar network

technology and need to define the similar automation logic, it is tedious to manually replicate the logic to all

other devices. With feature intent template, devices can be found automatically, and the automation analysis

logic can be applied to the new network intents.

In this chapter, we will first demonstrate how to define the network intent template parameters within existing

network intent, and then move on to how you can define these parameters in feature intent template. Later

we’ll show you how to run the feature intent template and view the results.

After having created the SubFIs and the FI groups based on eigen variables, we can convert the FI groups into

Network Intents. There are three ways to convert FI group into network intents:

1. Generating default network intent: In this step, we directly convert the configlets and CLI

commands to network intent. As there’s no automation logic is defined further, you will have network

intents that only include the configlets and CLI commands.

2. Generating network intent with analysis logic directly: In this step, we will use the devices and

configlets generated for each FIG and define the analysis logic to generate Network Intents directly.

3. Generating network intent with NI template: In this step, we convert the FI groups into network

intents based on the NI template. We can leverage the automation logic defined in the existing NI

template to create new NIs with the similar logic. In this section, we will mainly cover the steps to

generate default network intent. And we will go through more details regarding generating network

intents with NI template in the next chapter.

In order to generate default network intent, we’ll need to define the related network intent contents:

network_intents:

 path: xxxx/xxxx/General_BGP_{$crossRelationHash}

 conflict_mode: Skip

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 29

 lock_after_created: false

 create_default_NI: true

 baseline_update_type: LatestFromDE

The path field shows where to input the newly generated default network intents.

Note: We need to make each network intent unique so we can attach the CrossRelation field to the network intent

name.

The conflict_mode section is to determine if the network intent with the same name already exists even it

was not modified by this feature intent templet. In this case you can either overwrite the existing network

intent by using override flap or skip flag to simply skip it.

The lock_after_created field can be configured to lock network intent and prevent anyone else from

modifying it.

Note: Setting this field to be true needs to occur after the creation of network intent for the first time.

The feature intent template will not be able to update the network intent when it’s locked, and it has higher

priority over the conflict_mode field. In this case, you won’t be able to update the network intent and you

have to modify the network intent manually.

The create_default_NI field, as explained previously, is to specify which type of network intent aims to

generate. As in this case we are trying to generate default network intent without automation logic, we’ll set

this field to be true.

baseline_update_type: This field specifies how you would like to set the CLI baseline data, as the network

intents include the CLI commands defined in the YAML file. Since executing the feature intent template won’t

retrieve the CLI commands from the live network, two methods are provided as below to add CLI command

output to the network intent:

1. LatestFromDE: Use this setting if you want to make the current CLI command output as the baseline of

network intent. You need to make sure you have already retrieved the CLI command previously before

executing the feature intent template.

2. LiveFromNextRun: Use this setting if you want the system to set the CLI command baseline from the

live network when running the network intent.

As we don’t need to use the network intent template for reference, it is not necessary to define the

ni_template and ni_inputs sections.

30 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

5.1. Generate Default Network Intent

In the previous chapters, we have explained all the necessary contents needed to generate default network

intent; In this section let’s put them together and generate our first default network intent based on the Cisco

HSRP feature.

We can create a new feature intent template and reuse the related contents as explained earlier.

There is some basic information to be modified based on our feature intent template function.

• Name: the name of this YAML file; you can modify this filed and the name on the folder tree will be

modified accordingly.

• Description: define the description for this YAML file.

• Tags: specify the network technology in the YAML file. The settings here will also be inherited once we

have the network intents creating from this feature intent template.

Use the Validate YAML function to test if there’s any YAML syntax error or content error. You can also use the

Test Device Config Match to view the matched feature intent. The device match function here only works on a

single device for feature intent. It is not intended to view the subFIs or FI groups in current design.

Once the YAML file is properly defined and the testing results match our expectations, we can execute this

feature intent template across several devices.

Click and navigate to Execute & View Results tab; click Run Now and select the devices you want to run

against, then you will be able to view the results of current execution momentarily.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 31

You will be able to view all the automation resources generated by this feature intent template. Click each item

to view the details for each type of resources. You will find the default Network Intents created by this feature

intent template.

You can also click the View last Execution Logs to find the latest execution logs and view the execution

details.

Note: If you want to debug the execution of feature intent template, click the Run Now settings and switch the

Production Mode to Debug mode in the Run Setting.

32 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

To view the network intents details, you can create a map to include the devices within the network intent,;

and then from the left network intent pane, you will find all the default network intents the system just

created based on our definition.

For more information regarding using and viewing network intent, please refer to the document Network

Intent Tutorial.

5.2. Create Network Intent Directly

Previously we have explained how you can create the default Network Intent without automation, as well as

how you can create Network Intent with the full automation function. To understand how you can create

Network Intent with the full automation function, first you will need to understand how devices within the FIG

are matched and then mapped to different devices of NI with analysis logic.

The following diagram shows a single FIG with a couple of devices (R1, R2, R3 and R4). To create the

corresponding network intent based on the FIG, we need to think about the analysis logic for devices within

the FIG and group devices with the same analysis logic into a single role.

The NI role shown below represents devices that share the same analysis logic within the network intent. In

the YAML file we can define the analysis logic for a single role and define the conditions for the role to match

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm
https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 33

the corresponding devices. When the system executes the YAML file, it will find the matched devices and

generate the analysis logic for these devices.

Let’s take a look at how YAML file looks like in this case:

The sample YAML code shown as below only serves for illustration purpose and may not include all the

sections.

network_intents: # Definition for generating NI.

 tags: [BGP, HSRP]

 lock_after_created: true # the default is false

 baseline_update_type: LatestFromDE #

 create_default_NI: false # Whether to create Default NI for the FIG, the default is false.

 common_role_variables:

 analysis_devices:

 - device_role: role1

 device_condition: expression($fi.xxx)=="yyyy1"

 commands:

 - type: Command # Command or Config

 id: Conmand1 # samle: cmd1, config1

 command: show interface { $fi.intfName1 } # only for type=Command

 description: xxxxx

 parser: "./VisualParser.xpar"

 diagnoses:

 - anchor: Paragraph1.intf_name # optional, only support the variables from current

config/command

34 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 note: xxxxxxxx

 - anchor: Paragraph1.ip

 name: Check IP

 description: check the ip accuracy

 if:

 rule:

 loop_table_rows: true # the default is false

 conditions:

 - operand1: Command1.Paragraph1.ip[Current]

 operator: Does Not Equal # Equals, Contains....

 operand2_type: Var

 operand2: Command1.ip[Baseline]

 - operand1: Command1.Paragraph2.mask

 operator: Does Not Equal

 operand2: ni.roleVarible1[Current]

 boolean_expression: not (A or B)

 then:

 note:

 color: red

 text: Diagnosis Alert $Command1.Paragraph2.mask,$ni.roleVarible1

 status_code_for_this_device:

 enable: true

 type: Alert # Success or Alert

 status_code_for_ni:

 enable: true

 type: Alert # Success or Alert

 note: Diagnosis Alert $Paragraph1.ip

From the analysis device section (highlighted), you can define one or multiple roles with each of its own

conditions to match devices within FIG.

Device condition means how you can use the Sub FI variables and GDR variables as your condition to match

devices.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 35

You will then need to define the analysis logic. Depending on the need of performing analysis based on

configuration file or CLI command, you can specify the type with the id.

 commands:

 - type: Command # Command or Config

 id: Conmand1 # samle: cmd1, config1

 command: show interface { $fi.intfName1 } # only for type=Command

 description: xxxxx

 parser: "./VisualParser.xpar"

If you use CLI command here, specify the CLI command so you can continue using the sub FI variables. Please

note that you cannot create visual parser within the YAML file directly, instead, you will need to import the

Visual parser and reference the visual parser with its path. For more information on how to reference visual

parsers, please find the instructions on the chapter: Referencing Visual Parsers

For the diagnosis section, you will need to define the anchor as well as the analysis logic.

The analysis rules here are straight forward and you can use compound variable and loop table like the way

you use in the UI. Defining simple intra-device analysis logic is not complex, but if you want to define cross

device analysis logic, please refer to: Cross Device Analysis in Network Intent

Then you can define the status code and the notes for the diagnosis.

If you want to define multiple roles each with its own device matching logic, simply add another role at the end

with its device conditions.

36 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

5.2.1.Referencing Visual Parsers

Since currently we don’t support creating Visual Parsers within the YAML file directly, you can import an

existing visual parser into the FIT and reference it within the YAML file by following the steps below:

1. On Feature Intent Template Manager page, navigate to Reference Resources tab.

2. Click +Add Visual Parser.

3. Select the desired Visual Parsers and add them into the current FIT.

After adding the Visual Parser into the FIT, you can find the relative path that can be used within the YAMIL file.

To find out the parser variables within the current visual parser, simply click the Resource Name.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 37

5.2.2.Cross Device Analysis in Network Intent

In the previous sections, we have explained the basics of how to define the analysis logic for intra-device

analysis. However, it does not cover the scenario of defining the analysis logic for cross device check. You can

leverage the common_role_variable to achieve this.

network_intents: # Definition for generating NI.

 ref_label: ospf

 path: xxxx/xxxx/General_BGP_{$fi.crossRelationHash} # the path to generate NI, here can use

variables of FIG level

 tags: [BGP, HSRP]

 lock_after_created: true # the default is false

 baseline_update_type: LatestFromDE # support values: LatestFromDE(Relative to the time of

running FID), LiveFromNextRun, the default is LatestFromDE.

 create_default_NI: false # Whether to create Default NI for the FIG, the default is false.

 common_role_variables:

 - name: roleVarible1

 from_role: role1 # role which the variable come from

 device_condition: true # expression OrderIndex("vanId")==0

 variable: "Conmand2.var3"

 analysis_devices:

 - device_role: role1

 device_condition: expression($fi.xxx)=="yyyy1"

38 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 local_role_variables:

 - name: roleVarible2

 from_role: Role2 # role which the variable come from

 variable: "Conmand2.var3"

 device_condition: $device.xxx == $ni.role2.current.device.xxx # any or

expression OrderIndex("vanId")==$this.xxx

In the highlighted sections, we have defined a common_role_variables as a variable that can be referenced in

the section of device analysis. By defining the common_role_variable and device condition, you are specifying

what device this variable belongs to. In the diagnosis section, you can use the common role variable as below.

 diagnoses:

 - anchor: Paragraph1.intf_name # optional, only support the variables from current

config/command

 note: xxxxxxxx # donot support variable

 - anchor: Paragraph1.ip

 name: Check IP

 description: check the ip accuracy

 if:

 rule:

 loop_table_rows: true # the default is false

 conditions:

 - operand1: Command1.Paragraph1.ip[Current] # [] support values:

Current,Last,Baseline, the default is Current

 operator: Does Not Equal # Equals, Contains....

 operand2_type: Var # support types: Auto, Const, Var, ConstFromFITExp,

the default is Auto, Auto will be automatically recognized

 operand2: Command1.ip[Baseline] # support to use FI or GDR variables if

operand2_type=ConstFromFITExp

 - operand1: Command1.Paragraph2.mask

 operator: Does Not Equal

 operand2: ni.roleVarible1[Current]

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 39

After YAML file is executed and the Network Intent is generated, it will be automatically converted to different

devices as specified so you will be able to define cross-device analysis.

Using local role variable:

Common role variable is a static variable that can be used by any device role. And it doesn’t change no matter

where and how you reference it. There are cases where you may want to define cross device analysis based

on the different device conditions. Let’s use the earlier example to illustrate the concept. In the picture below,

we have two different NI roles (Role1 ad Role 2). And we want to define the cross relation device check for

device R1 with R2, R4 with R3 as they share some identical characteristics. We can use the local role variables

to achieve this:

 analysis_devices:

 - device_role: role1

 device_condition: expression($fi.xxx)=="yyyy1"

40 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 local_role_variables:

 - name: roleVarible2

 from_role: Role2 # role which the variable come from

 variable: "Conmand2.var3"

 device_condition: $device.xxx == $ni.role2.current.device.xxx # any or

expression OrderIndex("vanId")==$this.xxx

Under the analysis of role1, you can define a local role variable to find the expected variable of a device. When

creating the analysis logic for device R1, the local role variable will loop through device R2 and R3 and based

on the condition defined here, it will choose the device R2 as the expected device of the variable. When

creating analysis for device R4, based on the condition defined, it will choose device R3 as the device of the

variable.

5.3. Using Network Intent Template

Besides defining Network Intent directly within the YAML, there’s another way to define the Network Intent

with the analysis logic. That is using Network Intent Template.

In the tutorial, we use the word network intent template to explicitly display the template function, but in the

software there’s no clear distinction between the regular network intents and network intent templates. You

can use any network intent as the network intent template if the template variables are set up correctly. To set

up the network intent template variables, you can turn on the edit mode of any network intent, the click

Define Template Variables to open the Define Template Variables window.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 41

You will find all devices defined in this network intent are listed here along with the their own CLI commands.

Before looking into details on how variables can be used for other network intents, let’s look at 2 different

ways to create new network intents:

• Exact device count match：This means the device count of the newly created network intents needs to

be precisely match the device count of the existing network intent when the automation analysis logic

is applied.

• Adjustable device count match: This means the device count of newly created network intents can

differ from what’s defined within the network intent template. Check the option Allow to apply

multiple devices to one variable in this case.

Let’s look at the first method in which requires exact device count match. When the network intents require

the exact same device count based on the network technology, you can use this method. Also, the analysis

logic may require you to differentiate devices of the network intent. For example, HSRP requires 2 devices; one

is an active device and the other one is a standby device. In the automation check logic of the network intent,

you may define different checking logic depending on whether it’s an active device or a standby device.

(Use NetBrain map to replace picture later)

The second method doesn’t require the exact device count match, and it can be used when you have a couple

of devices grouped together for network technology that doesn’t require exact device count. The following is a

simple example of the IPSec designs for the WAN connections. You may define a network intent that includes

the sites connected via IPsec tunnels. The network intent may consist of several devices. You can define the

universal checking logic for all these devices. To create network intents for other WAN connections, you can

simply reuse the automation check logic as the logic itself is device independent, and the device count could

be greater or less.

42 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

For the network intents for HSRP check, we’ll need to keep the exact device count so we’ll leave the Allow to

apply multiple devices to one variable option unchecked as shown below:

The next step is for you to define how devices and related show commands to be replaced by the new FI

group we have found. The parameters we’ll need to replace include the following parts:

• Device Parameter: replaced with the new name. The device variables are pre-defined and you can

modify the variable name if needed.

• CLI Command Parameter: if you use the CLI commands for certain config related to the current

device, you will need to define it as a variable so the value can be replaced with the respective values

of new devices.

o Interface Name: In the network intent template, we’ll need to check the interface status for

WAN interfaces that faces the internet. We can use the show interface S0/1 command to

achieve this goal. However, the WAN interfaces used is S0/1, for the new devices to be

matched, the interface name may be different; you will need to define the interface name as a

variable so it can be replaced with the new value.

o VLAN ID: In the network intent template, we use the show interface id 10 to check the status

for VLAN 10. However, for the new device to be matched, the VLAN id may vary. We’ll need to

define it as a variable so it can be replaced with the new value.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 43

After defining the Network Intent Template Parameters, we will continue defining the variable mapping logic in

the feature intent template.

After we define the template variables, this Network Intent can act as a template to generate network intents.

You can also export the network intent and share with others.

5.3.1.Define Network Intent Parameters in Feature Intent Template

In the previous chapter, we have already defined the network intent template. Now it’s time to implement it

into our feature intent template. To reference the existing network intent template, we’ll select the Reference

Network Intent tab and then select the network intent template. You can either import the network intent

from the external files or select an existing one from the current IE systems. After importing the network

intent template into the feature intent template, you should be able to view the basic information for the NI

template.

44 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

The Relative Path in Feature Intent Template is the directory where you can reference the relevant

resources from the YAML file. Click the hyperlink, you will be able to view the NI template parameters that we

defined previously. These parameters are organized in Json format which you can easily view and use in YAML

file.

Now let’s go back to the YAML file section and define how to use the NI parameters. Within the network intent

section, we have explained some of these fields in the previous chapters. When using the network intent

template, you will need to set the flag of creat_dafault_NI to false.

network_intents:

 path: xxxx/xxxx/General_BGP_{$crossRelationHash}

 conflict_mode: Skip

 lock_after_created: true

 create_default_NI: false

 cli_baseline_update_type: LatestFromDE

 ni_template: "./NI_template1.ni"

 ni_inputs:

 devices:

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 45

 Device1:

 device_condition: OrderIndex('$priority')==0

 parameters:

 intf: $intfName1

 ip: $ip1

 Device2:

 device_condition: OrderIndex('$priority')==1

 parameters:

 intf: $intfName1

 ip: $ip1

As we copy the Relative Path from Feature Intent Template, we can use the network intent by referencing

its relevant path.

The ni_inputs field is where you can define matching rules of the ni template variables.

• device_condition: specify how the devices in the FI group should be mapped to the devices within NI

template. You could also use the global functions provided by NetBrain to differentiate different

devices within the FI group.

• Parameters: define the parameters to be mapped to the NI template.

As we explained previously, in this HSRP example, we want to use the OrderIndex() function to identify the

active device as well as the standby device. This function will index the devices within FI group by its priority in

ascending order. The first device with the lowest priority can be referenced with the first index:

OrderIndex('$priority')==0 , so in the example above, device1 is the standby device in the NI template and

in this way we can match the same device for the FI group we have generated.

Device2 is the active device and we can use the OrderIndex('$priority')==1 to reference the active device

created from the FI group.

Mapping multiple FI Group device to NI Template Device

In case the matching logic within the Network Intent can be used for multiple devices within the FI group, you

can use the following statements and all matched devices in the FI group will be mapped to device1.

ni_inputs:

 devices:

 Device1:

46 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 device_condition: True

 parameters:

 intf: $intfName1

 ip: $ip1

5.4. Generate Network Intents via NI Template

Once we have the feature intent template defined, we can execute the feature intent template and it will

generate the network intent with automation logic.

If opening one of the new network intents we have generated, you will find the CLI command has been

replaced with the new values of the specific device.

Please also beware that the following contents from the previous network intent template were also shown in

the newly created network intents:

⋅Drill-down CLI and Runbook Template

⋅Device level and global level status code

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 47

6. Building Intent-based Automation via Feature Intent

Template

Network intent is the most complicated resource built by feature intent template. However, creating network

intent itself is not adequate, as we need to define the proper ways to execute these network intents. In R10.0

release, we have invented the intent based automation functions that circle around network intent, allowing

you to create powerful triggered automation functions based on network intent relying on adaptive

monitoring function. We’ll explain how you can create the adaptive monitoring probes with feature intent

template and how to install the network intent into the adaptive monitoring systems. We’ll also explain how to

build the interactive automations and show the results by using decision tree.

6.1. Creating Flash Probe

Creating flash probe with feature intent template is quite straightforward. You need to define the similar fields

within the YAML file by simply following the UI. Unlike network intent that requires the template to create new

network intents, you can use all available fields in the UI to create flash probe from scratch. Let’s look at a

simple sample to illustrate the key components of flash probe. In the following example, we are trying to build

a device level flash probe to check the CPU status of the device, and the key design points are shown as below:

• Use show processes cpu to retrieve the CPU status for Cisco IOS devices

• Primary flash probe that retrieves CLI command from live network every 30 minutes

• Alert will be raised if the CPU usage is greater than 90%

• CPU usage will be set to monitor variable so the historical data can be tracked

A sample YAML code is shown as below; we will explain details for each section:

flash_probes:

 - name: overall_monitor_cpu_usage_check[Cisco IOS]

 description: "this is device CPU flash probe"

 target_type: Device

 qualification: |-

 $device.subTypeName == "Cisco Router" && $device.subTypeName == "Cisco IOS Switch"

 conflict_mode: Skip

 type: Primary

48 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 trigger_type: AlertBased

 alert_source: ""

 frequency_multiple: 0.5

 frequency_interval: 1

 variable_defines:

 - parser: "Built-in Files/Network Vendors/Cisco/Cisco IOS/show processes cpu [Cisco IOS]"

 parameters: {}

 variables:

 - name: five_min_cpu_usage

 alias: five_min_cpu_usage

 monitor:

 display_name: five_min_cpu_usage

 unit: "%"

 rule:

 verify_table: false

 conditions:

 - operand1: $five_min_cpu_usage

 operator: GTE

 operand2: 90

 boolean_expression: A

 alert_message: "CPU Is HIGH $five_min_cpu_usage"

 enable: true

1) Basic Information: You need to define the basic information such as name, display_name and

description.

2) Target_type: Specify whether the probe is used for device level parameter check or interface level

parameter check. CPU usage alert is for device level check, so we specify this as device level check.
 target_type: Device

3) Qualification: You can use the device level properties to filter devices. In this case as the flash probe is

for Cisco devices, we’ll filter the devices with device type.

4) Type: Primary, Secondary or External; as we want to retrieve the CPU data periodically, we’ll set the

type as Primary.

5) Trigger_type: AlertBased or TimerBased, which correspond to alert-based flash probe or timer-based

flash probe in the UI. CPU high usage is used for generating alerts, so we’ll set this as AlertBased.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 49

6) Alert_source: This is only for External Probe to specify the 3rd party name such as Splunk, Solarwinds,

PRTG, etc.

7) Frequency: the multiple of the period of the base frequency.

8) Variable_define: You need to specify the parser directory as well as the variables. To easily define the

parser directory in here, you can right click on a parser and select Copy Path to find the path

directory.

• Parameters: this needs to be defined in the CLI command

• Variables:

o Name: the original variable name from the parser.

o Alias: the alias for this variable to appear in alert check. As multiple parsers may

include same variable name, you can use the alias to make the variable unique

when referencing them within the alert check section.

o Monitor: specify whether this variable will be monitored to determine if the

historical data can be tracked. In this case, as we want to keep track of the

historical data for CPU usage, we’ll specify this as the monitoring variable.

 - parser: "Built-in Files/Network Vendors/Cisco/Cisco IOS/show processes cpu [Cisco IOS]"

 parameters: {}

 variables:

 - name: five_min_cpu_usage

 alias: five_min_cpu_usage

 monitor:

 display_name: five_min_cpu_usage

 unit: "%"

9) Define Rules: Define the alert rules in the rule section.

• Operand1: Stands for the variable needed to be checked

50 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

• Operator: Operator is the same as what can be defined using UI. You can find from the UI for

a complete list of operators and how to use them.

• Operand2: Stands for the threshold value you define for the variable. This field is omitted for

some of the operator types.

 rule:

 verify_table: false

 conditions:

 - operand1: $five_min_cpu_usage

 operator: GTE

 operand2: 90

 boolean_expression: A

10) Alert message: Define the alert message that will be generated.

Run Feature Intent Template to create Flash Probes:

After defining the flash probe, you can run the feature intent template to generate the related flash probes. As

these probes are enabled according to the definition, you will see these variables are executed based on the

defined frequency. To view the results for these flash probes, you can open a map and use the monitoring

data view to see the probe execution results.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 51

6.1.1.Creating Flash Probe for Interface Variable Check

We have explained how to create a primary flash probe for device level check, now let’s take a look at how to

create a flash probe for interface variable check. In this example, we are trying to create a new interface level

flash probe to check if link error is increasing. And the design points are shown as below:

• Use show interface to retrieve the interface error for Cisco devices

• Primary flash probe that retrieves CLI command from live network every 30 minutes

• Alert will be raised if the number of the interface errors retrieved during the current polling cycle is

greater than that of the last polling cycle.

• We will only enable the check on interfaces that are in up status and at the same time filter loopback

interfaces that we are not interested in.

• Interface errors will be set as monitoring variable so the historical data can be tracked.

The sample YAML code is shown as below, we will explain details for each section:

- name: overall_monitor_interface_link_error_check

 description: "this is interface link error flash probe"

target_type: Interface

target_interface:

 qualification: |-

52 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 $device.subTypeName == "Cisco Router" && $device.subTypeName == "Cisco IOS Switch" &&

intf.isLoopback == false && $intf.intfStatus =="up/up"

 split_by_interface: false

 conflict_mode: Skip # support values: Override and Skip, the default value is Skip

 type: Primary # Primary or Secondary or External

 trigger_type: AlertBased

 alert_source: ""

 frequency_multiple: 16

 variable_defines:

 - parser: "Built-in Files/Network Vendors/Cisco/Cisco IOS/show interface [Cisco IOS]"

 parameters: {}

 variables:

 - name: intfs_table.input_error

 alias: input_error

 monitor:

 display_name: input_error

 unit: ""

 - name: intfs_table.output_error

 alias: output_error

 monitor:

 display_name: output_error

 unit: ""

 - compound_variable: input_link_errors

 value_type: int

 expression: $input_error - (last)

 - compound_variable: output_link_errors

 value_type: int

 expression: $otput_error - (last)

 rule:

 verify_table: false

 conditions:

 - operand1: $input_link_errors

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 53

 operator: GT # 1. UseGB, 2...

 operand2: 0

 - operand1: $output_link_errors

 operator: GT # 1. UseGB, 2...

 operand2: 0

 boolean_expression: A or B

 alert_message: "exist input link errors or output link errors,,,"

enable: true

1) Target_type: As this case focuses on interface level error check, we’ll use the interface level variable,

so we’ll need to use interface to define Target_type.

2) Target_interface: Use this field to specify the interfaces you want to check for errors. All interfaces

will be checked by default. If you would like to have all interfaces checked, you can leave this filed

empty. In our case we keep this field empty in order to check all interfaces.

 You can also use the SubFI variables decoded so the system will create flash probe and include.
 target_type: Interface

 target_interface: $intfName

Suppose you use the line pattern to decode devices with interfaces that has OPSF configured, you can

further reference the $intf_name in the flash probe so the created flash probe will only include the

OSPF interface status.

3) Qualification: Interface level check allows you to use interface properties. In this case as we want to

focus on the interfaces that are in up status and filter all loopback interfaces, we can achieve our goals

with the following statement.
 $device.subTypeName == "Cisco Router" && $device.subTypeName == "Cisco IOS

Switch" && intf.isLoopback == false && $intf.intfStatus =="up/up

4) split_by_interface: For flash probe that may include multiple interfaces, you will need to decide

whether these interfaces should be grouped together into a single flash probe or separated into

different flash probes. In this case, as we’ want to use a single flash probe to include all these

interfaces, we set the value to false so the flash probe can include all the matched interfaces.

54 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

5) Compound variable: In this case, as we need to calculate the error increase count, the value of

current errors status minus the value of error status retrieved last time. The compound variable can

achieve this with the following definition:
 - compound_variable: input_link_errors

 value_type: int

 expression: $input_error - (last)

 Note: The last value can be referenced simply with (last).

6.1.2.Creating Flash Probe using Sub FI variables

One of the most powerful function feature decoding provides is that the variables are reusable. We can

extract them from the configuration files, and then reuse them in other automation resources. In this section,

we’ll see how to leverage the variables pared from the configuration files to use in flash probe. The following

example demonstrates the concept:

In the above example, we have devices with BGP connections configured under vrf and we want to make sure

the advertised routes don’t change. In this case we can create flash probes to track the advertised route

change. The YAML file to decode the BGP config files is shown as below:

name: Internal Test Feature BGP - Training

version: 1.0

source: ""

description: ""

tags: []

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 55

feature:

 qualification: {}

 configlet:

 sample: ""

 match_rules:

 - regexes: {}

 patterns:

 group1: |-

 interface $str:intfName1

 ip address $ip:ip1 $ip:mask1

 group2: |-

 MF: router bgp $num:bgp

 address_family ipv4 vrf $str:vrf_name

 O: bgp log-neighbor-changes

 F: neighbor $ip:ip2 remote-as $num:remoteBGP

 OE: neighbor $ip:ip3 update-source $str:intfName2

 split_keys:

 group1: []

 group2: [$fi.remoteBGP, $fi.vrf_name, $fi.ip2]

 relation: Equals($fi.intfName1, $fi.intfName2) && Equals($fi.ip2, $fi.ip3)

 merge_groups: []

You can see that all devices with desired configlet will be matched. And the flash probe we are trying to create

is shown as below:

flash_probes:

 - name: BGP_adv_routes_change {$fi.ip2} {$fi.vrf_name}

 display_name: BGP_adv_routes_change {$fi.ip2} {$fi.vrf_name}

 target_type: Device

 qualification:

 type: Primary

 frequency_multiple: 1

56 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 variable_defines:

 - parser: "Built-in Files/CLI Command/Cisco IOS/BGP_adv_routes [Cisco IOS]"

 parameters:

 vrf: $fi.vrf_name

 ip: $fi.ip2

 variables:

 - name: fi.BGP_adv_route

 alis: BGP_adv_route

 monitor:

 display_name: bgp adv route table

 rule:

 verify_table: false

 conditions:

 - operand1: $BGP_adv_route

 operator: UseGB

 boolean_expression: A

 alert_message: BPG advertised route change detected

 enable: true

This example demonstrates the power of using line pattern to decode the configuration files and using the

variable in our flash probe definition. From the configuration files decode, we are able to get the BGP neighbor

IP address and corresponding vrf information for each neighbor, represented by the variables $ip2 and

$vrf_name.

In this section, as we are trying to create flash probe for all bpg neighbors, each with a unique flash probe

name. To achieve that, we need to add the ip address and vrf name into the name field.

The CLI command to parser the data is:

 show ip bgp neighbors $ip advertised-routes vrf $vrf

And the sample output is shown as below.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 57

We are able to assign these variables with the value parsed from configuration files. Following the golden

baseline concept, we automatically create baseline for the bgp-advertsied route table and generates alert if

needed.

6.2. Install Network Intent into Flash Probe

With the network intents we have created, we’ll need to define how they should be executed, the feature

intent template provides you the method to install them into the flash probe. So when there’s alert generated

by the flash probe, the network intent diagnosis will be further executed.

In the following example, we are trying to achieve the network intent check based on flash probe:

• We have defined a network intent for HSRP check of active and standby devices.

• We have defined the flash probe to track the interface utilization.

o WAN link utilization for standby device should be less than 1%.

The purpose of this case is to track the WAN link utilization for standby devices periodically. If the traffic is

greater than the defined threshold, we’ll trigger the network intent to check whether the HSRP failover

happens. To achieve this goal, we can define the flash automation as follows:

triggered_automation:

58 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

 - description: xxxx

 automation:

 network_intents:

 auto_append_created_NI: true

 triggered_by_flash_probes:

 - name: wan_link_ultilzation_spike

 alert_source: NetBrain

 qualification:

 $device.subTypeName=="Cisco Router"

 note: Check bgp

 trigger_rule:

 run_type: Once

 frequency:

 interval: 2

 times: 3

 suppression:

 enable: true

 wont_run_twice_within: 2

 enable: true # whether to enable, the default is true

 conflict_mode: Skip

The key fields are explained as below:

1) Automation: You can define the network intents by specifying the directory in NetBrain. If network

intents are created within this feature intent template, you can set the flag of

auto_append_createed_NI as true to install the automation to specific flash probes.

In this case, we assume the network intent for HSRP check already created within this feature intent

template, so we keep it as true.

2) Triggered_by_flash_probes: Specify the flash probes you want to install to. The flash probe can be

created within this feature intent template or from other feature intent templates. In this case, as we

want the HSRP check to be triggered by wan_link_ultilzation_spike, we’ll specify the flash probe

name here.

• Note: note shown in execution tree, usually indicates the reason why the network intent

checked based on flash probe alert.

• Trigger_rule: define how you would like the NI to be executed when there’s flash alert, run

once or run multiple times.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 59

Schedule Network Intent

In addition to installing networking intent into an alert-based flash probe, you can also install the network

intent into a timer-based flash probe. That’s basically the same concept as scheduling network intent. The

settings are the same as installing network intents into the alert-based flash probe, just that you will need the

timer-based flash probe to trigger the network intent.

6.3. View Triggered Intent Results

After defining the install automation contents and executing the FI template, you can view the execution

results right from there. All detailed information about how many automations and what automations are

installed can be easily found.

To view the results of automation task themselves instead of FI template you can use the execution tree to

view the results per device.

60 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 61

7. Create/Update Data View Templates

Data View Templates can be used to understand the network designs and running status. You can create data

view templates manually with the pre-defined qualifications so the data view templates can only be applied to

specific devices. The current qualification supports basic GDR properties which might limit the accuracy of

data view templates in some use cases.

With the Feature Intent qualification, you can match devices with the exact device feature and add these

devices to the schedule Data View Template tasks.

One of the main problems resolved by Feature Intent template is how NetBrain service engineer can create

data view templates and apply them to different customers. Feature Intent Templates indeed provides the

natural way within NetBrain to define data view templates and adjust according to Network Change.

The following example shows how to define data view template and what functions of date view template are

supported:

• Define Qualifications: Define the qualification for this data view templates.

• Reference existing parser variables: You will need to reference existing parser variables already in

the system.

• Define recommended automations: You can define recommended automations for the current data

view templates.

62 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Refer to the table below for a full list of supported properties and definitions:

Properties Type Must Definition

path string Y full path of the Data View Template

node_type enum N
In IE 10.0, node_type only supports Legacy.

In the future, we will consider more node types

including:

• Fabric Node.

• EPG

• Bridge Domain

• VRF

• L2Out

• L3Out

• Contract

• Cluster Virtual Standard Switch

• Virtual Standard Switch

• Vmware Distributed Virtual Switch

• etc.

drill_down_actions
object N

In IE 10.0, we only support

• Execute CLI Commands.

• Runbook Template.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 63

drill_down_actions.commands
list -

string

N Show command.

drill_down_actions.runbook_te

mplates

list -

string

N Full path of runbook template.

filter_criteria object N Filter Criteria,

see https://www.netbraintech.com/docs/ie100a/h

elp/index.html?advanced-search.htm#dynamic-

search for more details

filter_criteria.device_types list -

string

N
Device Type name list:

• Cisco IOS Switch

• Cisco Router

• All device type name, please see 10.

Device Type Name

filter_criteria.feature_names
string N

Match GDR property: "_nb_features"

device_positions object N

device_positions.parser string N Parser path

device_positions.variable string N Variable name

device_positions.index enum N Data view position: 0, 1, 2 or 3, ...19.

interface_positions object N

interface_positions.interface_t

ype

enum N
• IPv4 Interface

• Interface

• IPv6 Interface

• IPsec VPN Interface

• GRE VPN Interface

interface_positions.positions
object N

interface_positions.positions.p

arser

string N Parser path

interface_positions.positions.v

ariable

string N Variable name

https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
http://confluence.netbraintech.com/confluence/display/SDNA/10.+Device+Type+Name
http://confluence.netbraintech.com/confluence/display/SDNA/10.+Device+Type+Name

64 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

interface_positions.positions.i

ndex

enum N Data view position: 0, 1, 2 or 3, ...23.

7.1. Creating Data View Template based on FIG

Besides creating the FIT level Data View Template, you can create more specific Data View Templates based on

FIG level resources and also use the parameters decoded from that FIG to generate more specific network

designs.

The sample YAML file shown below can be used to create FIG level Data View Template:

dataview_templates: # DVTs that need to create

 - path: ">>Data View Templates>Public Data View Templates>xxxx_{$fi.eigen1}"

 create_for_level: FIG # FIG or Global, the default is Global

 ref_label: "refLabel1"

 tags: [BGP, HSRP]

 default_data_source:

 type: LiveRegularly # LiveOnce, LiveRegularly, CurrentBaseline, the default is

CurrentBaseline

 frequency: # for LiveRegularly

 every: 2 # unit is minute

 repeat_times: 3 # repeat run times, if null means no repeat

You will need to specify create_for_level to create resources at FIG level. You can create multiple data view

templates based on multiple FIGs you have.

As these Data View Templates need to have different names, you will need to use the sub FI variable to

differentiate them. The recommended method is to use the eigen variable for cross_relationship, as it is the

unique key for each FIG.

 - path: ">>Data View Templates>Public Data View Templates>xxxx_{$fi.eigen1}"

The benefits of creating FIG level Data View Template as well as other resources is that you can easily leverage

the SubFI variables in these automation assets.

For the data view template, you can use the SubFI variables in multiple areas, but please make sure the value

of SubFI variable for each FIG needs to be unique and there’s no conflicting value within a single FIG. If the

value of sub FI is not unique within a FIG, NetBrain will only be able choose the first one, which may not be

your intended one.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 65

• Input_Variables：The input variables (if required by the selected parser). The FI variable can be used to

set the value for the input variable.

 input_variables:

 - type: ParserParameter

 parser: "Built-in Files/CLI Command/Aruba WLC/IP Interface Brief [Aruba WLC]"

 parameters:

 - name: para1

 value: ($fi.eigen1+2)

 allow_manual_input: false # the default is false

 - name: para2

 value: $fi.eigen2

 - name: para3

 value: "\"GDR:$vlan\""

• Device Position: the FI variable can be used in device position to show sub FI level specific value in

different Data View Templates generated by respective FIG.

 device_positions:

 - parser: "Built-in Files/CLI Command/HP ProCurve Switch/NTP Status [HP ProCurve Switch]"

 variable: sntp_mode

 - type: Text # Text or ParserVariable, the default is ParserVariable

 title: "ospf: {$fi.var1}" # GDR property name, not display name

 content: xxxxxxxxxxxxxx{$fi.var1}xx

Drill Down CLI Command: You can use FI variable in drill down command.

 - name: Basic Commands

 type: CLI # support types: CLI, RunbookTemplate

 commands: # cli commands

 - "show verson"

 - "show standby {$fi.xxxx}"

Please also note that you can use the FIG level Network Intent by creating FIG level Data View Template. To

attach only FIG level Network Intent as the drill down actions of Data View Template, set the following

parameter as true.

drill_down_actions: # dvt level drill down action

 - auto_append_created_NI_for_same_FIG: true # the default is false

66 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

8. Create/Update Runbook Template

Runbook Template can be used to organize the troubleshooting steps based on certain troubleshooting

scenarios. Currently you can use the Runbook Template to create the following node types:

• Data View Template

• Qapp

• Overall Health Monitor Qapp: The Overall Health Monitor Qapp which can help you understand the

running status and alert you if certain threshold is reached.

• Overall Health Monitor DVT: The Data View Template which can help you understand the running

status for all technologies, across traditional devices, SDN and Cloud network.

• CLI

To create the Runbook Template, first you will need to specify the basic parameters as shown in the following

YAML file:

runbook_templates:

 - path: "Shared Runbook Templates/{$fit.currentDomain}/xxx_{$fi.eigen1}"

 create_for_level: FIG # FIG or Global, the default is Global

 ref_label: "refLabel1"

 tags: [BGP, HSRP]

 qualified_devices: # support all the GDR properties that ES supports

 dynamic_search:

 conditions:

 - property: subTypeName

 values: [Cisco IOS Switch]

 - property: name

 operator: Contains # support types: Contains, Match, NotCotrains, NotMatch

 values: "BJ"

 boolean_expression: A and B

 static_include:

 auto_append_matched_devices: false # the default is false

 devices: [R1, R2]

 # qualification: $fi.xxx !="xxxxx"

 static_exclude:

 auto_append_matched_devices: false # the default is false

 devices: [R3, R4]

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 67

 # qualification: $fi.xxx =="xxxxx1"

The path represents the directory where you want to put these runbook templates. The resource level you are

creating may vary according to different use cases (similar to Data View Template):

• Global: Global means within current FIT, we only create one single Runbook Template. In this case, you

will need to specify the Runbook Template name without any FI variables.

• FIG Level: This means for each FIG, we will create corresponding Runbook Template, in this case, you

will need to specify the Runbook Template name with the FI variable name to create different RBTs.

Since these resources are related to these specific devices which reside in the current domain, you

may want to create a folder (so these resources can remain in the current domain name) by specifying

the following path to create resources:
 -path:"Shared Runbook Templates/{$fit.currentDomain}/xxx_{$fi.eigen1}"

You can define the pre-qualification for the current Runbook Template with the dynamic_search and also the

static include/exclude statements.

If you are creating Global level resources, you can usually specify the pre-qualification with the dynamic search

criteria by using GDR properties.

If you are creating FIG level resource, you should specify the pre-qualification with the static devices that has

been matched to achieve decisive match. This can be achieved by setting the auto_append_matched_devices

field to true.

qualified_devices: # support all the GDR properties that ES supports

 dynamic_search:

 static_include:

 auto_append_matched_devices: true # the default is false

 devices: [R1, R2]

 # qualification: $fi.xxx !="xxxxx"

Let’s further take a look at how you can create different node types in the next three sections.

8.1. Adding DVT Node into RBT

Based on whether you are creating global level or FIT level Runbook Template, you have the option to attach

the Data View Templates.

• Global Level: If you are creating global level Runbook Templates, you have the option to attach all DVTs

created within the current FIT by using the following statement:
 -auto_append_created_DVT:true# Whether to automatically add the created RBT by this

FIT, the default is false

And also you can reference different Data View Templates by using their paths:
path:">>Data View Templates>Built-in Data View Templates>_Built-in Data for LWAP"

• FIG Level: If you are creating FIG level Runbook Templates, you can attach the DVTs that are also

created by the same FIG by using the following statement:
 -auto_append_created_DVT_for_same_FIG:true

68 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

8.2. Adding Qapp Node into RBT

Adding Qapp into the RBT is quite straightforward. As currently you cannot create Qapp within the FIT directly,

you can reference an existing Qapp with its path.

 - type: Qapp # support types: DataviewTemplate, CLI, Qapp, OverallHealthMonitor,

OverallHealthView

 path: "Built-in Qapp/Qapp1"

 name: Qapp1

 qualified_devices: # optional

 dynamic_search: ~

 static_include: ~

 static_exclude: ~

8.3. Adding CLI Node into RBT

If the current RBT is created based on FIG, you can reference FI variables and use it in the CLI Command as

shown in the sample below:

 - type: CLI

 name: Command List

 auto_append_feature_commands: true #

 commands:

 - show version

 - show interface

 - "show standby {$fi.xxxx}"

 qualified_devices: # optional

 dynamic_search: # support all the GDR properties that ES supports

 conditions:

 - property: subTypeName

 values: [Cisco IOS Switch]

 - property: name

 operator: Contains #

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 69

 values: "BJ"

 boolean_expression: A and B

 static_include:

 auto_append_matched_devices: false # the default is false

 devices: [R1, R2]

 # qualification: $fi.xxx !="xxxxx"

 static_exclude:

 auto_append_matched_devices: false # the default is false

 devices: [R3, R4]

 # qualification: $fi.xxx =="xxxxx1"

Tip: You can also define the pre-qualification for this CLI node.

70 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

9. Create/Update Guidebook

Decision tree can help you create different guidebooks based on your troubleshooting scenarios. For more

information about the decision tree and how to use guidebooks via UI, please refer to the document:

Guidebook Feature Summary

You can use YAML to define Guidebook and organize the related automation assets. Similar to Data View

Template and the Runbook Template, there are 2 methods to create Guidebook:

• Global: create guidebook globally based on current FIT.

• FIG: create guidebook based on the FIG matched.

You can use the create_for_level parameter to create resources based on your needs.

 - name: guidebook1 under ({ $fig.GetDeviceNamesStr() })

 create_for_level: FIG # FIG or Global, the default is Global

You can also define the pre-qualification for the matched devices, the logic here is similar to what’s shown in

Data View Template and Runbook Template section earlier:

qualified_devices: # support all the GDR properties that ES supports

 dynamic_search:

 conditions:

 - property: subTypeName

 values: [Cisco IOS Switch]

 - property: name

 operator: Contains # support types: Contains, Match, NotCotrains, NotMatch

https://www.netbraintech.com/docs/ie100a/help/index.html?decision-tree.htm

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 71

 values: "BJ"

 boolean_expression: A and B

 static_include:

 auto_append_matched_devices: false # the default is false

 devices: [R1, R2]

 # qualification: $fi.xxx !="xxxxx"

 static_exclude:

 auto_append_matched_devices: false # the default is false

 devices: [R3, R4]

If you create the Guidebook globally, you will need to define the qualification based on the GDR or static

devices that have been matched. If you create the Guidebook based on FIG, it’s recommended to define the

pre-qualification with static_include statement to achieve precise match. So, when you open a match with

devices, only the qualified guidebooks will be shown for the easy troubleshooting purpose.

 The following two types of automations can be added to guidebooks：

• Data View Template

• Hypothesis

9.1. Adding DVT Node into Guidebook

Based on whether you are creating global level or FIT level Runbook Template, you have the option to attach

the Data View Templates.

• Global Level: If you are creating global level Runbook Templates, you have the option to attach all DVTs

created within the current FIT by using the following statement:
 -auto_append_created_DVT:true# Whether to automatically add the created RBT by this

FIT, the default is false

And also you can reference different Data View Templates by using their paths:
path:">>Data View Templates>Built-in Data View Templates>_Built-in Data for LWAP"

• FIG Level: If you are creating FIG level Guidebooks, you can attach the DVTs that are also created by

the same FIG by using the following statement:
 -auto_append_created_DVT_for_same_FIG:true

9.2. Adding Hypothesis into Guidebook

When you add hypothesis into Guidebook, you will also need to specify what automation resources are to be

added based on the hypothesis.

• RBT: add RBT to be associated with the defined hypothesis.

72 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

• NI: add NI to be associated with the defined hypothesis.

Similar to the way you are adding DVT into the Guidebook, you have the option to attach FIG or FIT level

resources to the Hypothesis:

• Global Level: If you want to add these RBTs and NIs into the Guidebook, you can use the following

methods:
auto_append_created_NI:True# Whether to add all the created NI by this FIT, the default

is false
auto_append_created_RBT: True# Whether to add all the created RBT by this FIT, the

default is false

 Also, you can add static Network Intents and Runbook Templates with their paths.

 network_intents:

 - "HSRP/General HSRP1" # static NI

 runbook_templates:

 - "Built-in RBTs/BGP/General HSRP" # static RBT

• FIG Level: If it’s FIG Level Guidebooks, you can attach the FIG level Network Intents and Runbook

Templates.
auto_append_created_NI_for_same_FIG:true# Whether to add the created NI for same FIG,

only for create_for_level=FIG, the default is false

auto_append_created_RBT_for_same_FIG:true# the default is false

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 73

10. Scheduling Feature Intent Template

Network is dynamic as network changes constantly occur. To make sure the automation resources and tasks

created by feature intent template are up to date, you can schedule the feature intent template to run

periodically.

The system provides the option to run feature intent template daily/weekly/monthly, and you can define the

proper frequency according to the network feature change frequency.

During the execution of the schedule task, the system will check the latest data and update the resources

accordingly, and it will also remove any obsolete resources.

The execution time of schedule task can be found from the top right corner. All the feature intent templates

defined with the same frequency will run at the same time to ensure all resources are updated.

74 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

11. More Functions Provided with Feature Intent Template

In this tutorial, we have covered the main functions of feature intent template and how it can help to scale the

entire reference workflow. The list below enumerates all the other resources that can be created by feature

intent template.

1. Automation assets can be created:

• Flash Probe

• Network Intent

• Data View Template

• Runbook

• Golden Baseline

• Guidebook

2. Automation assets can be installed to run:

• Network Intent triggered by Flash Probe

• Schedule Network Intent (triggered by timer-based Flash Probe)

• Schedule Data View Template

• Schedule Parser

• Schedule CLI

For complete guide on how to create all these resources, please refer to the Feature Intent Template Online

Help.

https://www.netbraintech.com/docs/ie100a/help/index.html?fid-yaml.htm
https://www.netbraintech.com/docs/ie100a/help/index.html?fid-yaml.htm

	1. Introduction
	2. FI Template Main Execution Flow
	3. Understanding Feature Decode using YAML File
	3.1. Test Feature Decode Result using Feature Intent Template
	3.2. Line Pattern Match Logic
	3.3. Device Qualification Basics

	4. Understanding Different Components of FIT
	4.1. Sub Feature Intent Introduction
	4.2. Generate FI Group for Multiple Devices
	4.3. Resource Generation Logic
	4.4. Reference Variables of Different Levels

	5. Create Network Intent
	5.1. Generate Default Network Intent
	5.2. Create Network Intent Directly
	5.2.1. Referencing Visual Parsers
	5.2.2. Cross Device Analysis in Network Intent

	5.3. Using Network Intent Template
	5.3.1. Define Network Intent Parameters in Feature Intent Template

	5.4. Generate Network Intents via NI Template

	6. Building Intent-based Automation via Feature Intent Template
	6.1. Creating Flash Probe
	6.1.1. Creating Flash Probe for Interface Variable Check
	6.1.2. Creating Flash Probe using Sub FI variables

	6.2. Install Network Intent into Flash Probe
	6.3. View Triggered Intent Results

	7. Create/Update Data View Templates
	7.1. Creating Data View Template based on FIG

	8. Create/Update Runbook Template
	8.1. Adding DVT Node into RBT
	8.2. Adding Qapp Node into RBT
	8.3. Adding CLI Node into RBT

	9. Create/Update Guidebook
	9.1. Adding DVT Node into Guidebook
	9.2. Adding Hypothesis into Guidebook

	10. Scheduling Feature Intent Template
	11. More Functions Provided with Feature Intent Template

