D
Net3rain._J.

NetBrain® Integrated Edition 10.0
Feature Intent Template

Tutorial

Version 10.0a | Last Updated 2021-07-19
Copyright ©2004-2021 NetBrain Technologies, Inc. All rights reserved.

Contents

1o INEFOAUCTION ettt ettt h st e st et e bt s b et et e st e bt e b e b et en e ebe b et enteaeebenb et entebesbenbensentebesbenteneene 4
2. Fl Template Main EXECULION FIOWciiiiiiiiiieieinienieieesesieieesiestestessesestestessesassassessessesessessessessssessensensesessessensonnes 7
3. Understanding Feature Decode USING YAML FIl ..ottt s 9
3.1. Test Feature Decode Result using Feature INtent TEMPIALEccvvrverieiriirenieieeseneseesesreseeseeessessessenees 12
3.2, LiNe Pattern MatCh LOGIC . ..ueiueieietiieieieiertetete ettt ettt sttt b e st b e s bbb e e sbe st et et eneebesbenaeneas 14
3.3, Device QUAIITICAION BASICS .iovviiveviiiiiiiitieiiieesteesiteeeetteesteesteesttessatesssseessseessseessssessssessssesssseessssesssasesseessseesns 15
4. Understanding Different COmMPONENTES Of FIT ..oouiiiiiiiiirieieisisiereieeseseieesestessessesessessesseseesessessessesessessessesees 17
4.1, Sub Feature INtent INtroOTUCTION . ..cc.cii ittt ettt ettt ettt sttt be st st e e ens 17
4.2, Generate Fl Group fOr MUILIPIE DEVICES.....couiiiiriirierieirisieieeeesesseseeesestessessesessessessessesassessessessesessessenseses 20
4.3, RESOUICE GENEIatiON LOZIC ..ccuiiiiiruereeitenienieeterte st st te e st e st ete st s bt st e e e s besbe et etesbesbe e e ensesresseensensessesneensensens 21
4.4. Reference Variables of Different LEVEIS ..ottt 24
5. Create NEtWOIK INTENT....ce ittt ettt s bbb b ese e b e s b et e e e st ebesrensenene 27
5.1. Generate Default NetWOIrK INTENT ..ottt sttt ettt sae e 30
5.2, Create NetWOrk INTENE DIFECEIY ..ottt sttt et s e sbe s et sbesbaebesbesbasssenbesbessnensensenee 32
5.2.1. REEreNCING VISUAI PArSEIS ...cuiieiieiriiieteertestertet ettt sttt sttt st sttt st sttt sbe st et ens 36
5.2.2. Cross Device Analysis in NetWOrk INTENT ..ottt st sbe s saeseas 37

5.3, UsSiNg Network INteNt TEMIPIALE ..cc.iviiiieireietenereete ettt ettt st st ettt be st be e ene 40
5.3.1. Define Network Intent Parameters in Feature Intent Templatecccocecvevenennineneneneneneneenes 43

5.4. Generate Network Intents via NI TEmMPIAte ..ottt st ss b b sbeessesaenne 46
6. Building Intent-based Automation via Feature Intent TemMPlate........ccoevevenininieninneneceseeee e 47
6.1, Creating Flash PrODe ... ettt sttt ettt e bt s be s st et e besbe e st enbesbesseensansenes 47
6.1.1. Creating Flash Probe for Interface Variable Check ... 51
6.1.2. Creating Flash Probe using SUD Fl Variablesccoeveiiinininiinineeteesesieeeese s 54

6.2. Install Network Intent into FIash Probe.... ...t 57
6.3. View Triggered INTENT RESUILS ..ottt ettt et sttt et st st s e e sbesbesaesasbesbesensens 59
7. Create/Update Data VIEW TeMIPIAtES ..cciiiiieiriceetesierie sttt sttt ste st sveetestestesteesaessesbesssessassessesssensessesssensensens 61

7.1. Creating Data View Template Based 0N FIG ..ottt es 64

D
Net3rain. .

8. Create/Update RUNDOOK TEMPIALE ..cviivirieieiririerieietse et se et ste et estessessesesbessesessesessessessessssessensensons
8.1, Adding DVT NOGE INO RBT ..ottt ettt ettt ettt b e sttt b ettt be st et et e st ebesbe st eneebesbeneenene
8.2. Adding Qapp NOTE iNTO RBT ...c.ccuiiiriiieieiriirietetnisiesseseressessesseessessessessesessessensesessessensessesessessensessesessensensons
8.3, AddiNg CLINOGE INTO RBT ...ttt sttt ettt sttt b sttt b e s bbb e st s b st et e e e st ebesbe st eneebesbenaenene

9. Create/Update GUIAEDOOKcccoiiiieieiteee ettt sttt b ettt b et e e b st e e et ebesbesbeneene
9.1. Adding DVT NOde iNtO GUIAEDOOKccciiriiiirieiirieneeieesest ettt st ettt besbesssesesbesbaensesseee
9.2. Adding Hypothesis iNt0 GUIEDOOKc.cciririerieiriirietete ettt ettt a e

10. Scheduling Feature INteNt TEMPIATE ...cccviviririeieierertetere ettt sttt eb et e sbesbe et e sbesbasssensenses

11. More Functions Provided with Feature INtent TEMPIAtecoevveiririreriereeeeeeee e

Version 10.0a | Last Updated 2021-07-19
Copyright ©2004-2021 NetBrain Technologies, Inc. All rights reserved.

1. Introduction

Network Troubleshooting, which requires enormous knowledge, individual efforts and team collaborations,
could be demanding and time-consuming. NetBrain's reference workflow with the new feature, intent-based
automation, aims to automate every incident ticket. The automation feature includes triggered automation

and interactive automation. The key components are listed below:

1) Adaptive monitoring probes

2) Dynamic Map (Enhanced with DVT)
3) Triggered runbook execution

4) Triggered NI execution

5) Interactive Runbook execution

6) Interact NI execution

7) Guidebook execution (which consists DVT, RBT and NI)

Network Device: 10,000
Possible Problems: 100,000 o Dynamic Map
- Dynamic Map o Execute Data View Template
m Runbook-based Automation o Runbook Automation
- Intent-based Automation o Triggered Map o Qapp
o Triggered Runbook
o External Trigger — 1 .gg dN l o Instant Qapp
o Triggered Network Intent o Intent-Based Automation

ServiceNow/Splunk/Monitoring

&, —
e o OmT gy memawe ~ o (SRR
/ | | Automation [*7] i Automation :.i:‘:(l:;v esolve

Continuous Automation

| fece R eedto —
Automation L%

Post-Mortem/Post-Change

Capture Problems Before
They Impact Business o Adaptive Monitoring

o Scheduled Network Intent
o Scheduled Qapp

However, building the automation system is not a simple matter with the following challenges:

e Network Intent is device-based automation for end users. As it is designed purposefully, end users
can easily utilize it. Also, end uses can define it with deep automation analysis logic, which can be

applicable in any scenarios. But it is difficult to be applied to other devices with similar intents.

4 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

e A better way needs to be found for the entire intent-based automation (adaptive monitoring,
decision tree) to scale to a large network and to keep up with the network change (intent change)

in the meantime.

To overcome the challenges, the engineers need to build the intent-based automation device-by-device, and
intent-by-intent, then view the results from the decision tree. It is quite difficult to build the intent-based

automation for a large network with complex technologies.

Execution Tree O
& US-BOS-R1 ~ Incident: Select 04/09/21 6:00 PM — 04/10/21 6:00 PN
Tags All BGP (5) HSRP (3) Multicasting {5} MPLS (2} SHIMP (2) ASA(2) b

Show: || Alert Only Flagged Only 4
~ Automations Triggered by Current Device

% BGP Config Change Check bgp
A & s BGP Design 1]

03/23/21 10115 PM ~

Is PowerOn or Reload co...
Check Reload Reason |:|

A Uptime < 15 mins
03/23/21 10:07 PM ~ !
7
Has crash file; Check Crash File m

~ Automations Triggered by Related Devices (1)

Triggered by PE-ASR1K-02
ge Y Check Reload Reason |:|

— Related Automations

Triggered by PE-ASR1K-03
riggered by Check BGP Neighbor [11]

Feature Intent Template is aiming to resolve the problems mentioned above with the following key
characteristics:

e Decode network features using line pattern for accurate device feature match.
e Scale intent-based automation to the entire network with the device matched.
¢ Maintaining the intent by executed periodically.

Feature Intent Template defined inside YAML-Format Feature Intent Definition File (FID file) is a set of
automation technology to define NetBrain automation across the entire network.

With the Config line pattern, various network technologies can be decoded from device configuration files.
Furthermore, the targeted device can be matched, and the key parameters can be stored in the line pattern
for future use. This will help to identify across the entire network which devices are running certain network
technologies (BGP, QOS, Multicasting etc.) and create the related automation resources in NetBrain's system
(Network Intent for BGP design, Flash Probe for BGP flapping check etc.). Execution methods can be further
defined as either triggered by the system or interactively executed by users.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 5

E

Configuration Files

Feature
Decode
NI Create/Remove/Edit
Install (Schedule&Trigger Run)
Feature Intents
”””””””””” Voo Flash Probe Create/Remove/Edit
/""’ >~ PN Install
[BeP OSPF
N4 ~ Guidebook {Create/Remove/Edit
Multicasting RBT {Create/lnstall

o Create/Remove/Edit
Install (Schedule)

DVT Create/Remove/Edit
Install

Triggered Automations Create/Remove/Edit
Install

The main purpose of the feature intent template is to decode network feature and build/install automations
across the entire network to support the reference workflow.

Dynamic Map (via DVT)
. Execute Data View Template
Triggered Map

. Runbook Automation \
Triggered Runbook Qapp
ServiceNow/Splunk/Monitaoring o Triggered Network Intent s bF

o External Trigger —
ntent-Based Automation

[s]

o o

o o

[s]

[s]

%

Resolved

‘| Triggered L EEENCSI » Interactive ~ B
| Automation My e i - CECUEdDY

Continuous Automation

S il BT ST
Automation L= /

Capture Problems Before / hange
They Impact Business /

Adaptive Monitoring

o

Scheduled Qapp
Scheduled Network Intent

o 0

In this tutorial, we will first introduce the Feature Intent main flow. Then, move on to the feature decode
concept and creating default networking intent. After that we'll show how the system can create network
intent based on network intent template. And further we'll explore how the entire intent-based automation
functions can be built via feature intent template.

6 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

2. Fl Template Main Execution Flow

In this chapter, we'll briefly illustrate how feature intent template works in your environment. Feature Intent
Template can be used in the following scenarios:

e NetBrain Service Engineer: NetBrain's service engineer can leverage the Feature Intent Template to
create automation based on the needs and apply the feature intent template easily to other customers
if needed.

e Customer DevOp Engineer: Customers’' DevOp engineers can create Feature Intent Templates and
apply the Feature Intent Template to the current network.

The following diagram illustrates how the Feature Intent Template works in your environment and support
your network consisting of multiple network devices with their corresponding configuration files. NetBrain will
further create data model and part of the data will be stored via GDR properties.

Feature Intent d|:||:| Automation
Definition

N o Configs Definition

. =
//—(Devices \

3
o GDR properties

— %__—#/
Network

Feature Automation
Instancel Creationl

(R1, R2)

Feature Automation
Instancel Creation2

(R3, R4)

With all the information, you can define the Feature Intent Template which includes the two parts:

1) Feature Intent Definition: This is the main component that defines how device config should be
matched with the defined line patterns. Devices along with their configs and GDRs will be
evaluated by the feature intent definition.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 7

name: HSRP Essential - [Cisco I05]

unigue_id: 7lbcb758-9cfc-4751-b25d-b2fBedebe258
'1.1" # FID YAML structure version number,

version:
description: "H5SRP essentizl for cisco ios ™
tags: [H5RP]
feature:
qualification: {}
configlet:
sample: ""
match_rules:
- regexes: {}
patterns:
groupl: |- #ss
M: interface §st
I: ip address %1
M: standby %st

pl $ip:maskl

ps: []
eigen_variables:

- name: crossRelationKey
expreszsion: Combine(
name: hsrp_name
expression: Str(

commands :

- show standby

- show standby brief

- show i1p interface brief
show logging | in XSTANDBY
_relation:

tandbyNamel ip $ip:ip2
standbyMName2 priority $str:priority

it should now be 1.1

N J.GetSubnet())

).ReplaceSpecialChar() + "_" +

2) Automation Definition: This part defines what automation assets need to be created/installed
based on the matched feature intent including network intent/flash probe/triggered automation,

etc.

A network including multiple devices will match devices with the network feature specified within the Feature
Intent Template and a set of automation assets will be created accordingly.

Feature Intent Template builds the data model group up from the raw configuration files, and it is not
intended to be created by end users. End users should only run the Feature Intent Templates, see the

generated results and use the created automations.

8 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

3. Understanding Feature Decode using YAML File

Network Troubleshooting requires deep understanding of different network technologies (i.e. ,HSRP, QOS or
BGP) configured on each device. Based on different network features, the knowledge and automation needed
for further troubleshooting may vary. To automate the automation assets required for troubleshooting, the
key and fundamental is to understand network features. This is how feature intent template decode network
features.

By looking into the configuration files of devices, we use the line pattern concept to find the matched devices
for that specific feature. One simple example is to look for whether BGP routing protocol is configured on
Cisco 10S device by searching for the following config lines:

router bgp 2
neighbor 10.10.10.10 remote-as 1

Each of the line contains two types of words, one is network keyword and the other one is variable. If we
take the first line as an example, router and bgp are network keywords while 2 is a variable. As different
router may configure different routing process, we need to combine the keyword with the variable to search
for whether BGP is configured for specific devices. By combining keywords and variables into a single line, we
have created a unique line pattern that serves as the feature decode unit. In NetBrain's implementation, the
variable is represented by $<variable type>:<variable name>, SO the line pattern that could be used to find
the above configuration file lines are:

router bgp $num:bgp as
neighbor $ip:neighbor ip remote-as Snum:remote as number

Since the BGP number here is an integer, we'll need to define the variable type as number (integer or float),
abbreviated as num. IP address is a built-in variable type in NetBrain, so you can use it to represent the IP
address. Remote-as number can be defined as num as well.

Must-have Line and Optional Line

The configuration for a specific network technology varies and it's not always the same. To use the line pattern
to find the maximum number of matches for a specific feature, you can leverage the must-have line and
optional line concept to tag your line pattern. Let's take the following configuration file snippet as an example:

interface GigabitEthernet0/21

description HSRP-GROUP

no switchport

ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

standby 1 priority 150

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 9

In order to find the device with the HSRP configured and match as many configlets as possible, we will need to
define the following lines as must-have lines:

interface GigabitEthernet0/21
ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

The above must-have lines are the key line patterns which determine whether the device has the HSRP
configured. You may or may not have the priority field configured by standby group, therefore you can
configure the following line as an optional line.

standby 1 priority 150

To specify whether a line is must-have or optional, you can use the mor o as flap ahead of the line patterns.
Putting them together, you'll have the following line pattern to match devices.

M: interface $str:intf
M: ip address $ip:ip address $ip:ip mask
M: standby Snum:standby group ip S$ip:standby ip

O: standby $num:standby group2 priority S$num:standby value

Note: Only devices that include all the must-have lines sequentially will be deemed as a match, so using the
optional line here can help you match devices with or without priority defined for standby group. To match the
devices that have priority explicitly defined, you will need to make the last line as must-have line.

Since the default behavior of line property is a must-have line, you can leave the must-have lines untagged
and the system will recognize them as must-have. The below pattern means the first three lines are must-have
lines and the last one is an optional line.

interface $str:intf
ip address $ip:ip address S$ip:ip mask
standby $num:standby group ip S$ip:standby ip

O: standby $num:standby group2 priority S$num:standby value

The configuration must match the line pattern definition sequentially to be identified as a match, if any line of
the configurations doesn't match the defined line pattern, it will not be considered as a match. The following
modified configlet won't be considered as a match for the defined line pattern as the lines cannot match the
exact order.

interface GigabitEthernet0/21

standby 1 ip 192.168.1.100

10 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

ip address 192.168.1.1 255.255.255.0

Organizing Line Pattern into Different Groups

With the exact line pattern match rule by order, sometimes you will need to find repetitive lines for certain line
patterns to find all the matched config lines. To support grouping several lines into a unique matching unit, we
introduced the group concept to better match device config files. The previous defined line pattern can be
recognized as single group and we can give it a simple group name group1 to indicate its uniqueness:

Groupl:
M: interface $str:intf
M: ip address $ip:ip address $ip:ip mask
M: standby $num:standby group ip $ip:standby ip

O: standby $num:standby group2 priority $num:standby value

By grouping these line patterns together, all interfaces with hsrp configured will be identified and extracted.

Another use case is to divide your line patterns into different groups so each group can be used as a unit to
match separately. For example, you want to find OSPF configuration files for Cisco devices that contain
interfaces with OSPF configured, the line pattern will look like below:

Groupl:
interface GigabitEthernet2/1
ip address $ip:ipl $ip:ip2
ip ospf authentication-key 7 011208034E18
ip ospf network point-to-point
router ospf 1
router-id $str:router id
passive-interface default
no passive-interface GigabitEthernet2/1
network 10.41.1.64 0.0.0.1 area O
network 10.41.2.0 0.0.0.255 area 0

maximum-paths 2

As the previous rule stated, if you put all these lines into a single group, NetBrain will search through the
configuration lines for a match. Therefore, a configuration file that may include multiple OSPF interfaces
configured may only be matched once. In order to support this case, you can use the group logic to divide the
line pattern into different OSPF groups as below:

Groupl:

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 11

interface GigabitEthernet2/1
ip address $ip:ipl $ip:ip2
ip ospf authentication-key 7 011208034E18
ip ospf network point-to-point

Group?2:
router ospf 1
router-id $str:router id
passive-interface default
no passive-interface GigabitEthernet2/1
network 10.41.1.64 0.0.0.1 area O
network 10.41.2.0 0.0.0.255 area O

maximum-paths 2

By dividing the line patterns into two different groups, NetBrain will search for the exact match for each group
separately, so a configuration file that includes multiple interfaces can quickly match the group1 definition and
the global OSPF configuration.

Note: The sequence of the groups doesn't matter, so if the defined pattern starting from group1 then group2, while
the real configuration file starts with group2 and then group1, the device will still be recognized as a match.

3.1. Test Feature Decode Result using Feature Intent Template

With the basic line pattern match rules, as explained previously, we can test the match result for certain
devices. From the NetBrain end user page, opening the feature intent template, you can easily create a new
feature intent template. NetBrain has populated a lot of sections in the default feature intent template but you
don't need to worry about them at this stage.

12 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

YAML Reference Network Intents

1 name: General_HSRP - Stepl

2 wversion: 1.8

3 source: "V

4 description: "

5~ tags:

6 - HSRP

7 = feature:

8 qualification: {}

9+ configlet:

1@ sample: ™"

11~ match_rules:

12 = - regexes: {}

13~ patterns:

14 - groupl: |- #ss

15 M: interface $str:intflamel

16 M: ip address $ip:ipl $ip:maskl

17 M: standby $str:standbyNamel ip $ip:ip2
18 M: standby $str:standbyName2 priority :Sstr*::r“icrityl
19

We can use the default settings and only modify the match rules section to add the line patterns as explained,
then group the line patterns into different groups if needed.

After adding the line patterns, click Validate YAML to verify whether the YAML format and content are correct.
Fix any possible errors based on the error messages shown below until you see no errors.

4 description: ""

5 tags:

3 - HSRP

7 = feature:

8 qualification: {}
ok configlet:

1@ sample: "

1~ match_rules:

12~ - regexes: {}

13~ patterns:

14~ groupl: |- #ss]

15 M: interface $str:intflamel

16 M: ip address $ip:ipl $ip:maskl

17 M: standby $str:standbylNamel ip $ip:ip2

18 M: standby $str:standbyName2 priority $str:priority

19 e
YAML Validation Results X

No Warning/Error!

Then you can select the Test Device Config Match to test whether a device is recognized as a match. If yes, you

can see what configuration file lines are matched. Click - at the top right corner to navigate to
previous/next matched configuration lines.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 13

Compare Result x

Device: & qapp-c3560-1 Data: [Configuration File A v
Matched Configlet Current Baseline 12/23/2020 01:55:46 PM

ip address 10.30.10.253 255.255.255.0 - ip address 10.30.10.253 255.255.255.0 -
ip pim sparse-mode
no ip route-cache cef
no ip mroute-cache

standby 4 ip 10.30.10.1 standby 4 ip 10.30.10.1

standby 4 priority 195 standby 4 priority 195

standby 4 preempt

standby 4 track 1 decrement 30

|

interface Vlan443

ip address 192.168.10.1 255.255.255.0
|

1

router eigrp 1

This function can help you quickly determine whether the defined line pattern matches with specific devices,
as a result you can modify the line pattern effectively based on the results.

Note: The configuration file is retrieved from the current baseline.

3.2. Line Pattern Match Logic

While there are a lot of detailed matching rules, we will not cover all of them in this tutorial. We will focus on
the important logic.

Repetitive Matching

You will often see repetitive lines within a real configuration files, such as ACL configuration for Cisco devices.
As it's impossible to define the exact line patterns for the repetitive contents, we'll need to use one single line
pattern to match all repetitive contents. Let's take the following configlet as an example:

access-list 95 permit 135.89.176.120
access-1list 95 permit 135.89.176.121
access-list 95 permit 135.89.176.79
access-list 95 permit 135.89.176.84
access-list 95 permit 135.89.176.82

In the above example, as you have one ACL configured with multiple statements, in order to match all these
access-list, instead of stating 5 repetitive line patterns, you could simply use the following line pattern to
match all the contents listed:

access-list Snum:acl id permit S$ip:ip addr

14 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Note: The keyword used to specify the repetitive matching behavior is “R". It is the default value and can be
omitted. Use the keyword “S” to match the first line only.

Note: Repetitive matching only works for non-first line of the line pattern. As if the line pattern appears in the first
line of the line pattern, it will be used as the key to set the matched lines into different groups instead of all
repetitive lines within a single group.

Fuzzy Matching

There are two types of line pattern matching method: exact match and fuzzy match. Exact match is relatively
straightforward, meaning all the defined keywords and variables within a line pattern need to be precisely
matched. Fuzzy matching means the line pattern only requires the first part of a real config line to be
matched.

Note: NetBrain's default line pattern behavior is fuzzy matching.

With the fuzzy matching, you can use a universal line pattern to match two or more different configuration
lines. Let's use a simple example below to explain the concept:

We have the line pattern ip address sip:ipl $ip:ip2 attempting to match the following config line:

ip address 10.10.10.10 255.255.255.0 secondary

Since the default behavior is fuzzy matching, this will also be recognized as a match. In case you want the line
pattern to be precisely match and doesn't want to use fuzzy matching, you can modify the matching rule to
exact matching so this line will no longer be recognized as a match. To mark a line pattern as exact matching,
you can mark the line pattern with “£” flag in the beginning of the line:

E: ip address $ip:ipl $ip:ip2

If the line needs to be marked both optional line and exact matching, mark the optional line and then the
exact matching, an example is shown as below:

OE: ip address S$ip:ipl S$ip:ip2
Note: First line of each group does not support fuzzy matching by default. If the neither F flag nor E flag is specified,
exact match will be performed by default.
Note: F flag is required to specified in order to support fuzzy match.

Note: If both F/E flags are written at the same time, they will be treated as F and fuzzy match will be performed.

3.3. Device Qualification Basics

Device feature decoding through configuration files is a powerful tool to quickly decode the network features
from the network devices. However, it requires massive calculation across all the devices in the calculation
scope. In some cases, you may need a light-weight method to quickly find devices. The following example

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 15

illustrates how you can leverage the device properties that have already been visualized by NetBrain, or use
the regex as a qualification to achieve this goal.

feature:

qualification:
device_scope:
type: DeviceGroup
groups: [
dynamic_search:
conditions:
property: mainTypeName
values: [Router, L3 Switch, LAN Switch]
property: subTypeName
values: [Cisco IOS Switch]
property: hasEIGRPConfig

operator: Matches
values: false
property: name
operator: Contains
values: [5]

boolean_expression: A and B and C and D

Qualification section allows you to use all device GDR properties to filter the related devices. For a full list of
supported properties, refer to Qualification Properties and Condition.

regexs section allows you to define one or more conditions to match related devices. mregex is supported in
this section.

Using the qualification and regex rule as preliminary filters can significantly improve the accuracy and
performance.

In some use cases you may only need to define the qualification and regex match without using the config line
pattern for feature decoding, which is totally fine, but you'll need to make sure you have at least one of the
three matching methods defined in order for the system to match devices and execute properly.

16 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

https://www.netbraintech.com/docs/ie100a/help/index.html?qualification-properties-and-condition.htm

4. Understanding Different Components of FIT

In the previous chapter, we explained the feature decode basics and how you can use the line patterns to
match the configlet from configuration files. In this chapter, we will explain how you can divide the feature
intent into sub-feature intent (SubFl for short) then generate default network intent with the sub-feature
intent.

4.1. Sub Feature Intent Introduction

Feature Intent stands for all the configuration lines matched for line patterns. However, most of the times you
could match a lot of repetitive patterns and you do want to divide the Feature Intent into sub Feature Intent
for further network intent creation. Let's take a simple example for the line patterns created for HSRP feature:

patterns:
groupl: |-
M: interface $str:intfNamel
M: ip address $ip:ipl $ip:maskl
M: standby S$str:standbyNamel ip S$ip:ip2

O: standby S$str:standbyName2 priority S$str:priority

The above pattern is created for HSRP feature match to match devices that have HSRP configured on its
interfaces, but one interface may have multiple HSRP groups configured, each with its own ip address and
priority. The following example shows a real configuration files with two HSRP groups configured on a single
interface and we need to split the groups into two different network intents.

interface GigabitEthernet0/21

description HSRP-GROUP

no switchport

ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0

udld port aggressive

standby 1 ip 192.168.1.100

standby 1 priority 150

standby 1 preempt

standby 2 ip 192.168.2.100

standby 2 preempt

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 17

In order to divide different HSRP group into different sub Feature Intent and further create network intent
based on certain HSRP group, we can divide the feature intent into SubFls based on the following parameter in
YAML:

o Split_keys: A line pattern could match multiple config line instances in the configuration file, and thus
some line pattern variables may have multiple possible values. Defining variable here will make sure
that variable only has one instance value in the subFl.

In the above sample, since we want to split the feature intent by group names, we can specify the split keys
as follows:

split keys: # variable signature concept, optional

groupl: [$intfNamel, $standbyNamel]

By defining the spit keys, assuming we only have this interface with the HSRP configured, the subFls we get
from the end results is:

_

interface GigabitEtherneto/21

ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

standby 1 priority 150

standby 1 preempt

First SubFI

interface GigabitEtherneto/21

ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0

standby 2 ip 192.168.2.100

standby 2 preempt

Second SubFI

Note: The line patterns for interface configuration will be shown as the same in each for the subFls.

interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary

ip address 192.168.1.1 255.255.255.0

Note: If you don't define the $standbyNamel as split keys, you will only have 1 Feature Intent/SubFl and the
content is shown as below:

_

18 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

interface GigabitEtherneto/21

ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100

standby 1 priority 150

standby 1 preempt

standby 2 ip 192.168.2.100

standby 2 preempt

First SubFI

Note: Standby group 2 is also matched here as a result of group stacking feature.

Use Relation to group line patterns into SubFI

The previous example only contains one group in the pattern field, in case you have multiple groups in the
pattern, and you want to group them together, you will need to have the relation defined.

Relation: relation is used to filter and keep the SubFl matching the relation definition, the only function you
can useis Equals (svarl, svar2) which means they should be the same.

relation: Equals ($fi.intfNamel, $fi.intfName2) && Equals ($fi.ip2, $fi.ip3)
In case you may have multiple groups defined within the pattern:
patterns:
groupl:

group?2:

We'll skip the line patterns here to illustrate the concept, both groupl or group2 could find multiple matches
within a configuration files. We'll mark the match as group1.1, groupl.2 ... groupl.mfor groupl, group2.1,
group2.2".group2.nf0r group2.

For the subFls to be generated, by default there would be m*n subFlIs by default if there’s no rule or relation
defined. By defining the relation using Equals (Sgrouplvar, S$group2var),we will only keep the SubFls that
match our definition.

The output value type of relation expression must be boolean.

Note: Besides the function we explained here, you can also define your relationship by expression. The sample
below is how you can define the same interface name as the relationship to achieve the same function.

Sfi.intfNamel == $fi.intfName2

Setting generating SubFl Flag

By default if you use multiple groups or define the split keys, NetBrain will generate multiple SubFls
according to your definition. But in some cases even if you find all related configlets, you still want to generate
a single Feature Intent instead of multiple subFls, in this case you can use the merge groups flag:

merge groups: ["groupX"]

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 19

You can define whether you want to create one instance for a single group for multiple groups. If you want all
groups to be generated as a single Feature Intent, list all group names here so the system will only generate
one single FI.

4.2. Generate Fl Group for Multiple Devices

Once we have generated the Fl and SubFls for multiple devices, we'll need to group them together to generate
FI group. Fl group contains a couple of devices with network relationship, a few samples are provided as
below:

e HSRP pair which includes active device and the standby device.
e ASA cluster which includes two ASA devices.

FI group can be recognized automatically to divide devices into different clusters based on the network
feature, and it is the equivalence of network intent.

To generate Fl group across multiple devices, we must find unique characteristics for these devices. From a
networking perspective, it can be easily explained by:

e HSRP pair of devices share the same virtual IP address and the primary device/secondary devices are
within the same subnet.
e Devices within an ASA cluster share the same IP address.

The unique characteristics of each device to generate Fl group is denoted with the “eigen” variables, identified
with the following statements:

eigen variables:
- name: crossRelationKey
expression: expression: Combine ($standbyNamel, Str (IP(S$Sfi.ipl, $fi.maskl)))
- name: site

expression: $device.GetSiteName ()

There are different ways to define the eigen variable expression:

1. SubFl variable: Use the SubFl variable directly if you want to use the SubFl variable extracted for eigen
variable.

2. Function calls: In case you want to group several SubFl variables, you can use the function call to
merge several SubFl variables into a new variable. In the above case, we used the combine () function
which is designed to combine several variables into a new one. As we want to make sure the Fl group
we are dealing with should have the same IP address as the same HSRP group. We don't want to mix
different HSRP groups into a single Fl group.

3. NetBrain's GDR properties: A lot of NetBrain's buit-in properties can be used in eigen variable for
verification purposes. In this case, if you have different sites that may have the same HSRP ip address
or HSRP group, you'll probably want to differentiate these devices by further criteria. Here we use the

20 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

device.site property to ensure that the same physical container site does not have same HSRP ip
addresses.

You can use one or more eigen variables for device clustering. One of key eigen variables can be for cross
device grouping and the others for complementary verification. The eigen variable for cross device grouping is
denoted with the cross relation section:

cross_relation:
group by: ScrossRelationKey
fi qualification: S$site!=null

group type: ExactMatch

By using the cross relation key, we are grouping the SubFls into Fl group. The system will use the group by
field to identify SubFls that have the same eigen variables and group them together.

The £i qualification field can be used to further filter unwanted SubFls based on eigen variables. In this
case, we only want to generate Fl group, if the devices are within the site that we created. And we don't want
to generate Fl group for devices that we haven't allocated to certain sites as that may introduce inaccuracy. We
can use the ssite as the qualification to filter devices that don't belong to any site.

The last one group type define the method to group devices into the same Fl group, and there are three
types:

1. Match: Eigen variable in this field needs to be the same, please note in case eigen variable may contain
array includes multiple values, and it only requires single value to be matched between different
devices to be recognized as a match.

2. ExactMatch: This is the default type and the eigen variable in this field needs to be precisely the same,
so SubFls can be grouped into a single Fl group. This includes the situation where you use the
combine () function to combine several eigen variables together, all eigen variables value need to be
the same to be grouped into a single Fl group. In case eigen variable may contain array that includes
multiple values, all items within the eigen variable must be matched so different devices will be further
grouped into a single Fl group.

3. Contain: there are cases that you may want to group subFls together if the eigen variable contain the
same eigen variable value, and they don't need to be the same. A simple use case is one P device has
several BPG neighbors to the PE devices and you want to group them into a single Fl group. The eigen
variable is defined as the bgp neighbor IP address, while the bgp neighbor IP address is defined in a
list which contains all eigen variable value of all PE devices.

4.3. Resource Generation Logic

From the last two sections, we have explained the logic for Sub Fl and FI Group, which belong to single device
and multiple devices respectively. Based on the feature decode results, NetBrain will further generate
automation resources and each automation resource has its own rule based on different feature decode
results.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 21

Let's use the following results as an example: suppose we have one single Feature Intent Template to run
against 2 devices with HSRP configurations. Based on the feature decode definition, we will be able to get the
following components with sample data:

Terminology Explanation Sample1(HSRP Case)

Line Pattern Used to express cerFain network features ar'1d M: interface $str:intfNamel
further based on this feature to match configlet M: ip address $ip:ipl
in devices. $ip:maskl
M: standby $str:standbyNamel
ip $ip:ip2

M: standby $str:standbyName2
priority $str:priority

Stands for all configlets matched from Device: US-BOS-SW1

Fl (Feature) L .
Intent) configuration files based on line patterns for a)
single device. May include one or more SubFls ~ interface vlan1ee
ip address 10.8.1.2
255.255.255.240
standby 1 ip 10.8.1.1
standby 1 priority 90
standby 2 ip 10.8.1.8
standby 2 priority 105
interface Vl1anlol
ip address 10.8.1.18
255.255.255.240
standby 1 ip 10.8.1.17
standby 1 priority 105
One instance of repetitive patterns extracted Device: US-BOS-SW1SubFI1
SubFI (Sub) o . £ 1
Feature Intent) from feature intent. Used as an individual intertace Vlanlee
automation analysis unit. Created with grouping 1P address 10.8.1.2
and split-keys.Use Case: Need automation 255'255'255:240
. . . . standby 1 ip 10.8.1.1
creation/analysis logic based on different L
. .) standby 1 priority 90
configlets of Fl. For example, a single device SubFI2
configured with different HSRP groups may interface Vlanloe
assume different roles (active/standby) for each ip address 10.8.1.2
of its group, and you want to create different 255.255.255.240
automation logic based on its active/standby standby 2 ip 10.8.1.8
status. standby 2 priority 105
SubFI3
interface Vl1anlol
ip address 10.8.1.18
255.255.255.240
standby 1 ip 10.8.1.17
standby 1 priority 105
A cluster of devices with each of their SubFl FIGl:Device: US-BOS-SW1
FIG (Sub) nterf v1an10o
Feature Intent based on their common network intertace vian
characteristics (represented by Eigen ip address 10.8.1.2
Group) 255.255.255.240

Variables)S les:
ariables)Samples standby 1 ip 10.8.1.1

standby 1 priority 90

e HSRP pair of devices they share the Device: US-BOS-SW2

same virtual IP address, and the interface Vl1anioe
primary device/secondary devices are ip address 10.8.1.3
within the same subnet. 255.255.255.240

standby 1 ip 10.8.1.1

22 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

e Devices within an ASA cluster share the standby 1 priority 105
same cluster IP address. FIGZ: Device: US-BOS-SW1
e Devices with same BGP as number interface Vlan100

clustered into a unique Fl Group. 2;2 gggr‘gzz ;Zés'l'z

standby 2 ip 10.8.1.8
standby 2 priority 105
Device: US-BOS-SW2
interface V1anloo
ip address 10.8.1.3
255.255.255.240
standby 2 ip 10.8.1.8
standby 2 priority 90
FIG3: Device: US-BOS-SW1
interface Vlanlol
ip address 10.8.1.18
255.255.255.240
standby 1 ip 10.8.1.17
standby 1 priority 105
Device: US-BOS-SW2
interface Vlanlol
ip address 10.8.1.19
255.255.255.240
standby 1 ip 10.8.1.17
standby 1 priority 110
Used for FIG creation logic. Defined via subFl eigen_variables:
variables. One Eigen variable (cross-relation - name: .cr‘ossRelationKey
key) is used to group subFlIs while other Eigen el 1l

variables can be used for further analysis. gg?gi;if$;nt122it1)))”§|22§;abnet())

Eigen Variable

Used to group subFls into FI group. subFls with cross_relation:
the exact value of cross-relation key will be gr‘oup_b;_/:
grouped into a unique Fl group. $crossRelationkey

Cross-relation
Key

The automation will be created based on the following components:

e FIT (Feature Intent Template): this means the resource are generated based on the feature intent
template. A single feature intent template may generate multiple Fls and FIGs for multiple devices, but
some resources are generated only based on the single Feature Intent Template being used, no matter
how many different subFls or FIGs have been generated.

The followings are a few sample resources that can be generated based on FIT:
o Schedule DVT/Parser Tasks
o Golden Baseline Definition
o DVT/Runbook Template configured based on FIT level.
o Guidebook configured based on FIT level.

e SubFI: this means the resources are generated based on the sub Feature Intent calculated for each
device, when a single device has multiple SubFls, the following resources can be generated based on
each SubFl that has been created:

o Flash Probe
o Schedule CLI Command

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 23

e FIG: this means the resources are generated based on the calculated FI group. When a FIT runs against
devices and generate multiple FIGs, the following resources can be further generated based on each
FIG that has been created:
o Network Intent
o Guidebook configured based on FIG level
o DVT/Runbook Template configured based on FIG level

We will introduce examples on how these resources are generated based on different levels. The following
diagram gives you a high-level view of how different automations can be generated based on different

resources:

Single Feature Intent
Template

FIT Level Resources

10000 Devices with
Configuration Files

*

Y

2000 Devica SubFls

SubFl Level Resources

FIG Level Resources l

2 500 Device Fl Group
Feature Decode Process

Automation Generation Process

‘Generate Nis based
lon each FIG

e p|Generat DVT instance per FIG]

(

¥ Generst single OVT basad on FIT

eh—v[eaﬁe'ale Run Template per FIG]

Loop by FIG to
generste Metwork Intents

» Schedule DVT/Parser

» Golden Baseline

Loop by FIG to
Generate DVT

* Flash Probe
» Schedule CL

Loop by FIG to
Generate Runbook Template

Generate single Runbook
.lTem;- ate based on FIT

Loop by FIG to
Generate Guidebook

Yes———®|Generate Guide Sook per FIG ‘

-
Create Guidebook based on FIT
leve

4.4. Reference Variables of Different Levels

As discussed, you can use line patterns to decode features for devices and reference variables in different
automation assets. Now it's time to take a look at different types of variables you can use.

24 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

We know that you can define variables within line patterns and these variables are called line pattern
variables. You can use them by including the Fl as prefix.

The following sample shows line patterns used to match interfaces with HSRP configuration with variables
defined:

groupl: |- #ss
M: interface S$str:intfNamel
M: ip address $ip:ipl $ip:maskl
M: standby S$str:standbyNamel ip S$ip:ip2

M: standby $str:standbyName2 priority S$str:priority

In order to use CLI commands that include the interface names, we can use the following statement to
reference the interfaces that are matched:

- show standby interface {$fi.intfNamel}
The same format also applies to eigen variables.

The following sample shows how you can define an eigen variable:
eigen variables:
- name: crossRelationKey

expression: Combine ($fi.standbyNamel, IP($fi.ipl, $fi.maskl) .GetSubnet ())
In order to use these variables, you will need to use s£i as prefix to reference these variables.

cross_relation: group by: $fi.crossRelationKey

Both line pattern variables and eigen variables can be recognized as SubFI level variables and you will need to
reference these variables by using s£i as prefix. All the supported variables are listed as below:

Variable Variable Source Reference Prefix

Level

e Line Pattern Variable

SubFl e Eigen Variable $fi $fi.bgp

Device Device GDR variable $device $device.name
Interface Interface GDR variable $intf ¢$intf.name
FIG Built-in variables in FIG $fig $fig.crossRelationHash

$fig.deviceNamesStr

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 25

NI NI role variables defined in NI $ni $ni.roleVariable2

We will cover samples of how to use them in the next few chapters.

26 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

5. Create Network Intent

Network Intent is device-based automation, allowing you to define the desired status for a couple of devices
(usually devices that have direct relationships from a network perspective)from configuration files and CLI
commands, and also define the alert logic to check if the desired status is violated. For more network intent
details, please refer to the document: Network Intent Tutorials.

Network intent may include very complex automation logic of defining how to check the desired status. It may
only include the basic configlets and CLI commands without automation logic, which is also known as the
default Network Intent.

The configuration files decoded can be used to fulfill the configlet displayed in the network pane, as well as the
configlet stored in network intent detail pane if there’s no automation logic defined for the network intent.

Intents for CurrentMap Q= [Check HSRP Status on DB Server in Boston £ Edit 2 %3 Author JohnSmith }

Check HSRP Status for 3 devices PE-ASR1K-01, PE-ASR1K-02 and MPLS-ASR900 in DB Server. O 4/5/2020 9:15PM ~ Run Live

HSRP (6) Multicasting (5) BGP (3) MPLS (2) SNMP (2) ASA (2) »
3 Devices I Standt for PE-ASR1K-01 ch d. Standb for PE-MPLSO1 ch: d. HSRP st L,I 2Tag
P T Fier o) add Folder View andby priority for changed. Standby priority for change stat
« (@ Check HSRP Status on DS Server in Boston &3 > ® PEASRIK-01 | HsepstawsNotChanged | Check HSRP Status for PE-ASRTK-01 Actions (3) »
Standt riority for PE-ASR1K-01 changed. Sta.. Last Run on 4/5/2020 9:15PM
LT L « % MPLS-ASR9001 | Standby priority for PE-ASRIK-01 changed | Check HSRP Status for MPLS-ASR9001 [
™ PE-ASR1K-01 A configuration
interface ethernet 0 « ' Configuration 20 and e10 should be set as primary, with pricrity 200 Compare

ip address 10.1.1.2 255.255.255.0

mac-address 4000.0000.0010
standby 1 ip 10.1.1.1 ip address 10.1.1.2 255.255.255.0

interface ethernet 0

standby 1 priority 200 mac-address 4000.0000.0010 (B Standby ip or priarity do not change
standby 1 ip 10.1.1.1 Details

1 ity 2
~ [BGP Flapping on Core Device in Boston prandbylL priorty) 200

3Devices Last Run on 4/5/2020 9:15PM interface ethernet 10
™ MPLS-ASR9001 A Configuration ip address 10.1.2.2 255.255.255.0
‘"te‘sz‘:e etharnat 0 mac-address 4000.0000.0011
ip address 10.1.1.2 255.255.255.0 Vian 2 had problems before
mac-address 4000.0000.0010 L= B D) el
standby 1 ip 10.1.1.1 standby 1 priority 200

standby 1 priority 200

~ [Show bgp neighbor Vlan 10's local state should be active
~ [Check HSRP Status on DS Server in Boston
|HSRPSIetustChangsd l Last Run on 4/5/2020 9:15PM 10.71.8.165 from 10.71.8.165 (192.168.0.102)
Origin incomplete, localpref 100, valid, external, backu..
® PE-ASR1K-03 B Configuration

Only allowed to recurse through connected route
interface ethernet 0 <
ip address 10.1.1.2 255.255.255.0 © 2alerts found in the table.

mac-address 4000.0000.0010 Neighbor V AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State Detail
standby 1 ip 10.1.1.1 10.100.1.1 4 300| 26 22 199 0 0 00:14:23 23
standby 1 priority 200 10.200.1.2 4 [200] 21 51 199 0 0 00:13:40 0
10.300.1.3) 4 300| 26 3 199 0 0 00:14:23 23
v ([BGP Flapping on Core Device in Boston 10.400.1.4 4 |300] 22 a2 199 0 0 00:13:40 0O

N Autnmation Nafined 3 Nevicas act Bun nn A/5/3090 61500

We can also define the show command within the YAML file to generate CLI command used in Network Intent.

Defining CLI Command in YAML File

You can also define the show commands for feature verification. And the CLI command will be passed on to
the network intent CLI command when the default network intent is created based on the feature intent. To
define the CLI command section, simply put the CLI commands in it. Then, the CLI commands will be used for
the HSRP check, as shown below:

match rules:
patterns:
groupl: |- #ss
M: interface S$str:intfNamel
M: ip address $ip:ipl $ip:maskl

M: standby S$str:standbyNamel ip $ip:ip2

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 27

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

M: standby S$str:standbyName2 priority $str:priority
commands :

- show standby

show standby brief

- show standby interface {$fi.intfNamel}

show standby interface {$fi.intfNamel} {S$fi.standbyNamel}

You can see that not only the general CLI commands without parameters can be used here. You can also use
the CLI commands with the parameters referenced from the line patterns. In the above example, we use the
show standby interface {$intNamel} command.This actually means from the configuration files, we use the
line pattern to match the interfaces with the HSRP configuration, then we only check the interface HSRP
status for these interfaces. By specifying parameters used in line pattern, we can significantly improve the CLI
command accuracy for future use.

Before getting into the details of using feature intent template to create network intent with automation logic,
we expect you have the basic understanding of network intent components and its various automation logic
basics; please refer to Network Intent Tutorial if you need to get familiar with these concepts.

The concept of using Feature Intent Template to create much more network intents based on the existing
network intent is simple. As network intent is device-based automation, you will need to select specific devices
and then define the network intent automation. So, if you have a lot of devices with the similar network
technology and need to define the similar automation logic, it is tedious to manually replicate the logic to all
other devices. With feature intent template, devices can be found automatically, and the automation analysis
logic can be applied to the new network intents.

In this chapter, we will first demonstrate how to define the network intent template parameters within existing
network intent, and then move on to how you can define these parameters in feature intent template. Later
we'll show you how to run the feature intent template and view the results.

After having created the SubFls and the Fl groups based on eigen variables, we can convert the FI groups into
Network Intents. There are three ways to convert Fl group into network intents:

1. Generating default network intent: In this step, we directly convert the configlets and CLI
commands to network intent. As there's no automation logic is defined further, you will have network
intents that only include the configlets and CLI commands.

2. Generating network intent with analysis logic directly: In this step, we will use the devices and
configlets generated for each FIG and define the analysis logic to generate Network Intents directly.

3. Generating network intent with NI template: In this step, we convert the Fl groups into network
intents based on the NI template. We can leverage the automation logic defined in the existing NI
template to create new Nlis with the similar logic. In this section, we will mainly cover the steps to
generate default network intent. And we will go through more details regarding generating network
intents with NI template in the next chapter.

In order to generate default network intent, we'll need to define the related network intent contents:
network intents:
path: xxxx/xxxx/General BGP {$crossRelationHash}

conflict mode: Skip

28 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

lock after created: false
create default NI: true

baseline update type: LatestFromDE

The path field shows where to input the newly generated default network intents.

Note: We need to make each network intent unique so we can attach the CrossRelation field to the network intent
name.

The conflict mode section is to determine if the network intent with the same name already exists even it
was not modified by this feature intent templet. In this case you can either overwrite the existing network
intent by using override flap or skip flag to simply skip it.

The lock after created field can be configured to lock network intent and prevent anyone else from
modifying it.

Note: Setting this field to be true needs to occur after the creation of network intent for the first time.

The feature intent template will not be able to update the network intent when it's locked, and it has higher
priority over the conflict mode field. In this case, you won't be able to update the network intent and you
have to modify the network intent manually.

The create default NI field, as explained previously, is to specify which type of network intent aims to
generate. As in this case we are trying to generate default network intent without automation logic, we'll set
this field to be true.

baseline update type: This field specifies how you would like to set the CLI baseline data, as the network
intents include the CLI commands defined in the YAML file. Since executing the feature intent template won't
retrieve the CLI commands from the live network, two methods are provided as below to add CLI command
output to the network intent:

1. LatestFromDE: Use this setting if you want to make the current CLI command output as the baseline of
network intent. You need to make sure you have already retrieved the CLI command previously before

executing the feature intent template.
2. LiveFromNextRun: Use this setting if you want the system to set the CLI command baseline from the
live network when running the network intent.

As we don't need to use the network intent template for reference, it is not necessary to define the
ni template and ni_inputs sections.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 29

5.1. Generate Default Network Intent

In the previous chapters, we have explained all the necessary contents needed to generate default network
intent; In this section let's put them together and generate our first default network intent based on the Cisco
HSRP feature.

We can create a new feature intent template and reuse the related contents as explained earlier.

Name: General_HSRP (4) Description:
Define Template Execute & View Besults
YAML Reference Network Intents
A
1 name: General HSRP (4)
2 version: 1.8
3 source: "7
4 description: ""
5~ tags:
6 - HSRP
7 - feature:
8 qualification: {}
e configlet:
1e "
i1~
12 ~ :
13- patterns:
14 - groupl: |- #ss|
15 M: interface $str:intflNamel
16 M: ip address $ip:ipl $ip:maskl
17 M: standby $str:standbyNamel ip $ip:ip2
18 M: standby $str:standbyName2 priority $str:priority
19~ split_keys:
20 groupl: []
21 relation: Equals())
22 generate _one FI_groups: []
25 = eigen variables:
24 - - name: crossRelationKey
25 expression: Combine(5 IP(N).GetSubnet())
26~ - name: var -
27~ R TP
BE! D
@ Help Validate YAML Test Device Config Match

Save

There is some basic information to be modified based on our feature intent template function.

¢ Name: the name of this YAML file; you can modify this filed and the name on the folder tree will be
modified accordingly.

e Description: define the description for this YAML file.

e Tags: specify the network technology in the YAML file. The settings here will also be inherited once we
have the network intents creating from this feature intent template.

Use the Validate YAML function to test if there's any YAML syntax error or content error. You can also use the
Test Device Config Match to view the matched feature intent. The device match function here only works on a
single device for feature intent. It is not intended to view the subFls or Fl groups in current design.

Once the YAML file is properly defined and the testing results match our expectations, we can execute this
feature intent template across several devices.

Click and navigate to Execute & View Results tab; click Run Now and select the devices you want to run
against, then you will be able to view the results of current execution momentarily.

30 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Name: General_HSRP (4) Description:

Define Template Execute & View Results

Run Now & | [schedule Run: v

Last Execution Time: 1/3/2021, 11:22:02 PM (Manual Task) View Last Execution Logs (Falled)

® Last Execution Results O All Execution Results
Matched Devices:

1 Devices

Associated Automation Assets:
0 Network Intents
0 Data View Templates
0 Runbook Templates
0 Flash Probes

0 Golden Baseline Variables

Installed Automation Tasks:
3 Triggered Network Intent Tasks
0 Scheduled CLI Tasks
0 Scheduled Data View Template Tasks

0 Installed Recommended Actions

You will be able to view all the automation resources generated by this feature intent template. Click each item
to view the details for each type of resources. You will find the default Network Intents created by this feature
intent template.

Triggered Network Intent Tasks X

3 Items Search... [OF

Automation Type Automation Name Last Updated Time

Network Intent General_HSRP3960F2897903C503C3F07...

Network Intent General_HSRP8D499514E8159E80ECTAD...

Network Intent General_HSRPCHB66CACCBCA3IBITEGRTE...

1/3/2021,11:22:.05 PM
1/3/2021, 11:22:05 PM

1/3/2021, 11:22:05 PM

You can also click the View last Execution Logs to find the latest execution logs and view the execution
details.

Note: If you want to debug the execution of feature intent template, click the Run Now settings and switch the
Production Mode to Debug mode in the Run Setting.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 31

Define Template

_ | O schedule Run: weekly v

View Last Exect

Run Settings

Log Mode: @ Production
O Debug

To view the network intents details, you can create a map to include the devices within the network intent,;
and then from the left network intent pane, you will find all the default network intents the system just
created based on our definition.

« \:| Data View Runbook D
Intents for Current Map v | Type to search Q=
3intents ¥ Filter(0) €3 Refresh
Vm General_HSRPC6666CACCBCA3BI1E67E6849A4FB9120213DCE335...
1 Devices 1 Diagnosis
@ qapp-c3560-1 [Configuration
interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary

ip address 192.168.1.1 255.255.255.0

standby 1 ip 192.168.1.100 | - |

qapp-c3560-1
10.10.19.252

Cisco 105 Switch

Vm General_HSRP3960F2897903C503C3F077282CA2D94E1FSB3CD7OF...
$alertCount row have alert 12/28/2020, 2:59:22 PM

& qapp-c3560-1 [Configuration
interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary

For more information regarding using and viewing network intent, please refer to the document Network
Intent Tutorial.

5.2. Create Network Intent Directly

Previously we have explained how you can create the default Network Intent without automation, as well as
how you can create Network Intent with the full automation function. To understand how you can create
Network Intent with the full automation function, first you will need to understand how devices within the FIG
are matched and then mapped to different devices of NI with analysis logic.

The following diagram shows a single FIG with a couple of devices (R1, R2, R3 and R4). To create the
corresponding network intent based on the FIG, we need to think about the analysis logic for devices within
the FIG and group devices with the same analysis logic into a single role.

The NI role shown below represents devices that share the same analysis logic within the network intent. In
the YAML file we can define the analysis logic for a single role and define the conditions for the role to match

32 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm
https://www.netbraintech.com/docs/ie100a/help/index.html?using-ni-to-document-network-design.htm

the corresponding devices. When the system executes the YAML file, it will find the matched devices and
generate the analysis logic for these devices.

Network Intent 1

Feature Intent Group1

Let's take a look at how YAML file looks like in this case:

The sample YAML code shown as below only serves for illustration purpose and may not include all the
sections.

network intents: # Definition for generating NI.
tags: [BGP, HSRP]
lock after created: true # the default is false
baseline update type: LatestFromDE #
create default NI: false # Whether to create Default NI for the FIG, the default is false.
common role variables:
analysis_devices:
- device_role: rolel
device condition: expression ($fi.xxx)=="yyyyl"
commands :
- type: Command # Command or Config
id: Conmandl # samle: cmdl, configl
command: show interface { $fi.intfNamel } # only for type=Command
description: xxxxx
parser: "./VisualParser.xpar"
diagnoses:

- anchor: Paragraphl.intf name # optional, only support the variables from current

config/command

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 33

note: XXXXXXXX

- anchor: Paragraphl.ip

name: Check IP

description: check the ip accuracy

if:
rule:
loop table rows: true # the default is false
conditions:

- operandl: Commandl.Paragraphl.ip[Current]
operator: Does Not Equal # Equals, Contains....
operand2 type: Var
operand2: Commandl.ip[Baseline]

- operandl: Commandl.Paragraph2.mask
operator: Does Not Equal
operand2: ni.roleVariblel [Current]

boolean expression: not (A or B)
then:

note:

color: red

text: Diagnosis Alert $Commandl.Paragraph2.mask,$ni.roleVariblel
status_code for this device:

enable: true

type: Alert # Success or Alert
status_code for ni:

enable: true

type: Alert # Success or Alert

note: Diagnosis Alert $Paragraphl.ip

From the analysis device section (highlighted), you can define one or multiple roles with each of its own
conditions to match devices within FIG.

Device condition means how you can use the Sub Fl variables and GDR variables as your condition to match
devices.

34 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

You will then need to define the analysis logic. Depending on the need of performing analysis based on
configuration file or CLI command, you can specify the type with the id.

commands :
- type: Command # Command or Config
id: Conmandl # samle: cmdl, configl
command: show interface { $fi.intfNamel } # only for type=Command
description: xxxxx

parser: "./VisualParser.xpar"

If you use CLI command here, specify the CLI command so you can continue using the sub Fl variables. Please
note that you cannot create visual parser within the YAML file directly, instead, you will need to import the
Visual parser and reference the visual parser with its path. For more information on how to reference visual
parsers, please find the instructions on the chapter: Referencing Visual Parsers

For the diagnosis section, you will need to define the anchor as well as the analysis logic.

Configuration Diagnosis

@ US-BOS-R1 Last Updated: 02/03/2021 08:32:54 AM
2. Define Diagnosis
Summary Text Original Text Search... Qv A " Add Note (3 Add Diagnosis Can also click a variable on the left to

212 h)uter‘ ospf 1 .
213 router-id 10.10.10.10 OSPF 1 Design Name: Check OSPF Design Anchor: | aspfi V]

214 area 51 range 10.8.0.0 255.255.0.0

215 network 10.8.1.0 0.0.0.255 area @ Check OSPF Desi... Type description Eospﬂ
216 default-information originate always

217 !

If () Loop Table Rows

A @ USB.. Current v @ USB.. Baseline v
ospf1 v Equals v ospf1 v @
B | SelectVariable v

Raolean Fxpression: A

The analysis rules here are straight forward and you can use compound variable and loop table like the way
you use in the Ul. Defining simple intra-device analysis logic is not complex, but if you want to define cross
device analysis logic, please refer to: Cross Device Analysis in Network Intent

Then you can define the status code and the notes for the diagnosis.

If you want to define multiple roles each with its own device matching logic, simply add another role at the end
with its device conditions.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 35

5.2.1.Referencing Visual Parsers

Since currently we don't support creating Visual Parsers within the YAML file directly, you can import an
existing visual parser into the FIT and reference it within the YAML file by following the steps below:

1. On Feature Intent Template Manager page, navigate to Reference Resources tab.

2. Click +Add Visual Parser.
3. Select the desired Visual Parsers and add them into the current FIT.

Select Parser

Piease enter a parser name

4 [All Parsers
4 [Built-in Parsers
4 [Configuration
4 [Aruba WLC
[Shared Parsers in Tenant

EJ My Parsers

After adding the Visual Parser into the FIT, you can find the relative path that can be used within the YAMIL file.

YAML Reference Resources

ltem: 2 + Add Metwork Intent w + Add Visual Parser
No. Resource Name Resource Type Relative Path in Feature Intent Template Last Imported Time
1 hsrp_configuration.xpar J/hsrp_configuration.xpar 6/15/2021, 10:00:40 AM
2 show interface xpar Jfshow interface xpar 6/16/2021, 10:44:27 AM

To find out the parser variables within the current visual parser, simply click the Resource Name.

36 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Network Intent Summary

"name”: "show interface”,
“command”: "show interface”,
“variables": [
1
“fulllName": “Paragraphl®,
“type": "table”,
“gescription”: "

"fullName": "Paragraphl.intf”,
“type”: "string”,
"description”: ""

“fulllName”: “Paragraphl.mtu”,
“type": "int",
“gescription”: "

5.2.2.Cross Device Analysis in Network Intent

In the previous sections, we have explained the basics of how to define the analysis logic for intra-device
analysis. However, it does not cover the scenario of defining the analysis logic for cross device check. You can
leverage the common role variable to achieve this.

network intents: # Definition for generating NI.
ref label: ospf

path: xxxx/xxxx/General BGP {$fi.crossRelationHash} # the path to generate NI, here can use
variables of FIG level

tags: [BGP, HSRP]
lock after created: true # the default is false

baseline update type: LatestFromDE # support values: LatestFromDE (Relative to the time of
running FID), LiveFromNextRun, the default is LatestFromDE.

create default NI: false # Whether to create Default NI for the FIG, the default is false.
common_role variables:
- name: roleVariblel
from role: rolel # role which the variable come from
device condition: true # expression OrderIndex("vanId")==0
variable: "Conmand2.var3"
analysis devices:
- device role: rolel

device condition: expression ($fi.xxx)=="yyyyl"

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 37

local role variables:
- name: roleVarible2
from role: Role2 # role which the variable come from
variable: "Conmand2.var3"

device condition: $device.xxx == $ni.role2.current.device.xxx # any or

expression OrderIndex ("vanId")==S$this.xxx

In the highlighted sections, we have defined a common role variables as a variable that can be referenced in
the section of device analysis. By defining the common role variable and device condition, you are specifying
what device this variable belongs to. In the diagnosis section, you can use the common role variable as below.

diagnoses:

- anchor: Paragraphl.intf name # optional, only support the variables from current
config/command

note: xxxxxxxx # donot support variable
- anchor: Paragraphl.ip
name: Check IP
description: check the ip accuracy
if:
rule:
loop table rows: true # the default is false
conditions:

- operandl: Commandl.Paragraphl.ip[Current] # [] support values:
Current, Last,Baseline, the default is Current

operator: Does Not Equal # Equals, Contains....

operand2 type: Var # support types: Auto, Const, Var, ConstFromFITEXp,
the default is Auto, Auto will be automatically recognized

operand2: Commandl.ip[Baseline] # support to use FI or GDR variables if
operand2 type=ConstFromFITEXp

- operandl: Commandl.Paragraph2.mask
operator: Does Not Equal

operand2: ni.roleVariblel [Current]

38 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

After YAML file is executed and the Network Intent is generated, it will be automatically converted to different
devices as specified so you will be able to define cross-device analysis.

If () Loop Table Rows

A @ USEB.. Current v @ US-B.. Baseline v
ospf v Equals v OSPF_design v | W

B Select Variable W

Boolean Expression: A

Using local role variable:

Common role variable is a static variable that can be used by any device role. And it doesn’t change no matter
where and how you reference it. There are cases where you may want to define cross device analysis based
on the different device conditions. Let's use the earlier example to illustrate the concept. In the picture below,
we have two different NI roles (Role1 ad Role 2). And we want to define the cross relation device check for
device R1 with R2, R4 with R3 as they share some identical characteristics. We can use the local role variables

to achieve this:

Network Intent 1

Feature Intent Group1

analysis devices:
- device role: rolel

device condition: expression ($fi.xxx)=="yyyyl"

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 39

local role variables:
- name: roleVarible2

from role: Role2 # role which the variable come from

variable: "Conmand2.var3"

device condition: $device.xxx == $ni.role2.current.device.xxx # any or
expression OrderIndex ("vanId")==S$this.xxx

Under the analysis of role1, you can define a local role variable to find the expected variable of a device. When
creating the analysis logic for device R1, the local role variable will loop through device R2 and R3 and based
on the condition defined here, it will choose the device R2 as the expected device of the variable. When

creating analysis for device R4, based on the condition defined, it will choose device R3 as the device of the
variable.

5.3. Using Network Intent Template

Besides defining Network Intent directly within the YAML, there’s another way to define the Network Intent
with the analysis logic. That is using Network Intent Template.

In the tutorial, we use the word network intent template to explicitly display the template function, but in the
software there's no clear distinction between the regular network intents and network intent templates. You
can use any network intent as the network intent template if the template variables are set up correctly. To set
up the network intent template variables, you can turn on the edit mode of any network intent, the click
Define Template Variables to open the Define Template Variables window.

Network Intent

[Test Network Intent /£ Edit

(=[] 0o Author: Eddy =

I Edit Network Intent

[l Test Network Intent Cancel [RURNS | Save =

Export

Define Template Variables Disable

Lock With Password

Lock Without Password
. Define variables to be used by Feature Intent template. e

" —
Define Template Variables
Device/CLI Command NS > 7

Variable Default Value

4 & qapp-c3560-1 sdevicel qapp-c3560-1

B Configuration +Add

[0 show interface g0/1 + Add

[0 show vlanid 200 +Add

[T] Allow to apply multiple devices to one variable. @

Cancel OK

40 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

You will find all devices defined in this network intent are listed here along with the their own CLI commands.
Before looking into details on how variables can be used for other network intents, let's look at 2 different
ways to create new network intents:

e Exact device count match: This means the device count of the newly created network intents needs to
be precisely match the device count of the existing network intent when the automation analysis logic
is applied.

e Adjustable device count match: This means the device count of newly created network intents can
differ from what's defined within the network intent template. Check the option Allow to apply
multiple devices to one variable in this case.

Let's look at the first method in which requires exact device count match. When the network intents require
the exact same device count based on the network technology, you can use this method. Also, the analysis
logic may require you to differentiate devices of the network intent. For example, HSRP requires 2 devices; one
is an active device and the other one is a standby device. In the automation check logic of the network intent,
you may define different checking logic depending on whether it's an active device or a standby device.

171.16.6.0/24
Host 1 Server1
E]! 1 - 2 171.16.2.0/24 = l
Host 2
Server 2
L) > 'S |
R1# show run R2# show run
! !
interface Ethernet0 interface Ethernet0
ip address 171.16.6.5 255.255.255.0 || ip address 171.16.6.6 255.255.255.0
no ip redirects no ip redirects
standby 1 ip 171.16.6.100 standby 1 ip
standby 1 priority 115 standby 1 preempt
standby 1 preempt standby 1 track Seriall
standby 1 track Serial0

(Use NetBrain map to replace picture later)

The second method doesn't require the exact device count match, and it can be used when you have a couple
of devices grouped together for network technology that doesn't require exact device count. The following is a
simple example of the IPSec designs for the WAN connections. You may define a network intent that includes
the sites connected via IPsec tunnels. The network intent may consist of several devices. You can define the
universal checking logic for all these devices. To create network intents for other WAN connections, you can
simply reuse the automation check logic as the logic itself is device independent, and the device count could
be greater or less.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 41

US-BOS-R1 SR <

US-SMF-R1

For the network intents for HSRP check, we'll need to keep the exact device count so we'll leave the Allow to
apply multiple devices to one variable option unchecked as shown below:

Allow to apply multiple devices to one variable. @

The next step is for you to define how devices and related show commands to be replaced by the new Fl
group we have found. The parameters we'll need to replace include the following parts:

o Device Parameter: replaced with the new name. The device variables are pre-defined and you can
modify the variable name if needed.

e CLI Command Parameter: if you use the CLI commands for certain config related to the current
device, you will need to define it as a variable so the value can be replaced with the respective values

of new devices.

o Interface Name: In the network intent template, we'll need to check the interface status for
WAN interfaces that faces the internet. We can use the show interface SO/1 command to
achieve this goal. However, the WAN interfaces used is S0/1, for the new devices to be
matched, the interface name may be different; you will need to define the interface name as a
variable so it can be replaced with the new value.

o VLAN ID: In the network intent template, we use the show interface id 10 to check the status
for VLAN 10. However, for the new device to be matched, the VLAN id may vary. We'll need to
define it as a variable so it can be replaced with the new value.

42 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Define Template Variables

Define variables to be used by Feature Intent template.

Device/CLI Command

4 &/ qapp-c3560-1
3 Configuration
show vlan id 10

show interface g0/1

Variable Default Value
Sdevicel qapp-c3560-1
+Add

$vlan_id 10
$intf_name gon

After defining the Network Intent Template Parameters, we will continue defining the variable mapping logic in

the feature intent template.

After we define the template variables, this Network Intent can act as a template to generate network intents.
You can also export the network intent and share with others.

i1 Mapl * > Pagelwv

« \:\ DataView £ Runbook D
All Intents v | Type to search Q =
4Intents YV Filter(0) €3 Refresh

-
Vm General_HSRP3960F2897903C503C3F077282CA2D94E1F5B3CD79F...
$alertCount row have alert 1/4/2021, 9:29:21 AM
@ qapp-c3560-1 B Configuration
interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary

ip address 192.168.1.1 255.255.255.0
standby 1 ip 192.168.1.100

Vm General_HSRP8D499514E8159E80EC1A03473FDBC49724461FE4F ...
1 Devices 1 Diagnosis
@ qapp-c3560-1 B Configuration

interface Vlan442
ip address 10.30.10.253 255.255.255.0

[0 Test Network Tntent # Edit] 50 Author: Eddy =
4 SaveAs
Edit
1 Devices 0 Diagnosis View Abstract
Install As Triggered Automation
V & qapp-c3560-1 0 Diagnosis Device De
Install As Recommended Automation
v [Configuration Run Settings
228 | standby @ preempt Delete
Disable

Lock With Password

Lock Without Password

5.3.1.Define Network Intent Parameters in Feature Intent Template

In the previous chapter, we have already defined the network intent template. Now it's time to implement it
into our feature intent template. To reference the existing network intent template, we'll select the Reference
Network Intent tab and then select the network intent template. You can either import the network intent
from the external files or select an existing one from the current |IE systems. After importing the network
intent template into the feature intent template, you should be able to view the basic information for the NI

template.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 43

Define Template Execute & View Results

YAML Reference Network Intents
Item: 1 4 Add External Files
No. Network Intent Name Relative Path in Feature Intent Template Last Imported Time
1 HSRP_NI.xni SHSRP_NI.xni 12/28/2020, 2:55:57 PM

The Relative Path in Feature Intent Template is the directory where you can reference the relevant
resources from the YAML file. Click the hyperlink, you will be able to view the NI template parameters that we
defined previously. These parameters are organized in Json format which you can easily view and use in YAML
file.

1= (f
2 "name": "HSRP_NI",
3 “description”: "",
4 "author": "admin",
5 "multipleDeviceToOneVariable": false,
= “devices": [
7o {
8 “varlame”: "%devicel”,
9 "deviceName"”: “gapp-c3560-1",
18 - “commands”: [
11 ~ 1
12 "name”: "Configuration”,
13 "commandTemplate™: "",
14 “variables": {},
15 “statusCodes™: []
16 b
17 ~ {
18 “name”: "show standby”,
19 “commandTemplate™: ™",
28 "variables": {},
21 ~ "statusCodes": [
22~ {
23 "alertCondition™: "IfTrue”,
24 "ni_status_code™: true,
25 “ni_status_code_message”: "$alertCount row have alert”,
26 "device_status_code”: false,
27 "alert_message”: “"this is a test”
28 T
29 1
38 }
31]
32 }
33 1
34 [}

Now let's go back to the YAML file section and define how to use the NI parameters. Within the network intent
section, we have explained some of these fields in the previous chapters. When using the network intent
template, you will need to set the flag of creat dafault NI to false.

network intents:
path: xxxx/xxxx/General BGP {$crossRelationHash}
conflict mode: Skip
lock after created: true
create default NI: false
cli baseline update type: LatestFromDE
ni template: "./NI templatel.ni"
ni inputs:

devices:

44 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Devicel:
device condition: OrderIndex ('Spriority')==0
parameters:
intf: $intfNamel
ip: $ipl
Device2:
device condition: OrderIndex('Spriority')==1
parameters:
intf: $intfNamel
ip: $ipl

As we copy the Relative Path from Feature Intent Template, we can use the network intent by referencing
its relevant path.

Define Template

YAML Reference Network Intents

No. Network Intent Name Relative Path in Feature Intent Template

The ni_inputs field is where you can define matching rules of the ni template variables.

e device_condition: specify how the devices in the Fl group should be mapped to the devices within NI
template. You could also use the global functions provided by NetBrain to differentiate different
devices within the Fl group.

e Parameters: define the parameters to be mapped to the NI template.

As we explained previously, in this HSRP example, we want to use the orderindex () function to identify the
active device as well as the standby device. This function will index the devices within FI group by its priority in
ascending order. The first device with the lowest priority can be referenced with the first index:

OrderIndex ('$priority')==0, S0 inthe example above, device1 is the standby device in the NI template and
in this way we can match the same device for the Fl group we have generated.

Device2 is the active device and we can use the orderindex ('$priority')==1 to reference the active device
created from the Fl group.

Mapping multiple Fl Group device to NI Template Device

In case the matching logic within the Network Intent can be used for multiple devices within the Fl group, you
can use the following statements and all matched devices in the FI group will be mapped to device1.

ni inputs:
devices:

Devicel:

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 45

device condition: True
parameters:
intf: $intfNamel

ip: $ipl

5.4. Generate Network Intents via NI Template

Once we have the feature intent template defined, we can execute the feature intent template and it will
generate the network intent with automation logic.

If opening one of the new network intents we have generated, you will find the CLI command has been
replaced with the new values of the specific device.

52 Mapl * > Pagelw [General_HSRP3960F2897903C503C3F077282... Click to retrieve new data. [0 0 Author: FID =
« [J pataview [Runbook [N 0 04/01/2021 09:29 AM v Run Live
All Intents. v ft Q = - -
= 1 Devices [S] salertCount row have alert + Add Result Note =
4intents 'Y Filter(0) 53 Refresh
v/ General HSRPCEG6GCACCRCAIBY T E6TE6RAGA4FRA120213DCETS “| v & qapp-c3s60-1 0 Diagnosis Device Details ocate on Map
1Devices 1 Diagnosis Exe v B Configuration Compare
& qapp-c3560-1 [Configuration 1 Failed to parse the selected results, but the sutomation was run properly.
interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0
standby 1 ip 192.168.1.100
v General HSRP3960F289790: 3F077282CA2D94E1F5B3CDTIF. .
> @ show standby Compare

[S) salertCount row have alert

& qapp-c3560-1 [§ Configuration
interface GigabitEthernet0/21
ip address 192.168.2.1 255.255.255.0 secondary
ip address 192.168.1.1 255.255.255.0
standby 1 ip 192.168.1.100

vl General HSRPEDA9D514E8150E80ECT AD3473FDBCAG724461FELF
1 Devices 1 Diagnosis

& qapp-c3560-1 [Configuration

Please also beware that the following contents from the previous network intent template were also shown in
the newly created network intents:

-Drill-down CLI and Runbook Template

-Device level and global level status code

46 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

6. Building Intent-based Automation via Feature Intent

Template

Network intent is the most complicated resource built by feature intent template. However, creating network
intent itself is not adequate, as we need to define the proper ways to execute these network intents. In R10.0
release, we have invented the intent based automation functions that circle around network intent, allowing
you to create powerful triggered automation functions based on network intent relying on adaptive
monitoring function. We'll explain how you can create the adaptive monitoring probes with feature intent
template and how to install the network intent into the adaptive monitoring systems. We'll also explain how to
build the interactive automations and show the results by using decision tree.

Feature Intent: Automation for Automation ‘

b b . b 4

Adaptive .
> S Install Intent Monitoring Verify Intent

6.1. Creating Flash Probe

Creating flash probe with feature intent template is quite straightforward. You need to define the similar fields
within the YAML file by simply following the Ul. Unlike network intent that requires the template to create new
network intents, you can use all available fields in the Ul to create flash probe from scratch. Let's look at a

simple sample to illustrate the key components of flash probe. In the following example, we are trying to build
a device level flash probe to check the CPU status of the device, and the key design points are shown as below:

e Use show processes cpu to retrieve the CPU status for Cisco 10S devices

e Primary flash probe that retrieves CLI command from live network every 30 minutes
e Alert will be raised if the CPU usage is greater than 90%

e (CPU usage will be set to monitor variable so the historical data can be tracked

A sample YAML code is shown as below; we will explain details for each section:
flash probes:
- name: overall monitor cpu usage check[Cisco IOS]
description: "this is device CPU flash probe"
target type: Device
qualification: |-
Sdevice.subTypeName == "Cisco Router" && S$device.subTypeName == "Cisco IOS Switch"
conflict mode: Skip

type: Primary

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 47

trigger type: AlertBased
alert source: ""
frequency multiple: 0.5
frequency interval: 1
variable defines:
- parser: "Built-in Files/Network Vendors/Cisco/Cisco IOS/show processes cpu [Cisco IOS]"
parameters: {}
variables:
- name: five min cpu usage
alias: five min cpu usage
monitor:
display name: five min cpu usage

"o

unit: "&"
zules
verify table: false
conditions:
- operandl: S$five min cpu usage
operator: GTE
operand2: 90
boolean expression: A

alert message: "CPU Is HIGH $five min cpu usage

enable: true

1) Basic Information: You need to define the basic information such as name, display name and

description.

2) Target type: Specify whether the probe is used for device level parameter check or interface level

parameter check. CPU usage alert is for device level check, so we specify this as device level check.
target type: Device

3) Qualification: You can use the device level properties to filter devices. In this case as the flash probe is
for Cisco devices, we'll filter the devices with device type.

4) Type: Primary, Secondary Or External; as we want to retrieve the CPU data periodically, we'll set the
type as Primary.

5) Trigger type: AlertBased Or TimerBased, Which correspond to alert-based flash probe or timer-based
flash probe in the Ul. CPU high usage is used for generating alerts, so we'll set this as AlertBased.

48 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Primary Probe Secondary Probe External Probe

8 ltems +Add™

Add Alert-based Primary Probe

Enab Estimate Freq... Created By

Add Timer-based Primary Probe

T System
[l B Compare c... -— a day System
(O High Frequ... - 4 hours System
(i) Low Freque... — 7 r.ia},-‘s System

6) Alert_source: This is only for External Probe to specify the 3rd party name such as Splunk, Solarwinds,
PRTG, etc.

7) Frequency: the multiple of the period of the base frequency.

8) Variable_define: You need to specify the parser directory as well as the variables. To easily define the
parser directory in here, you can right click on a parser and select Copy Path to find the path

directory.
Name
Access List [Cisco 105] v ©
Access Lists [Cisco 105] Open
Access-list [Cisco 105] Save as

ARP Summary [Cisco I0S] Export

Rename
BadLsa Log [Cisco 105]

Copy Path
BGP All Summary [Cisco [0S

| Delete
BGP Neighbors [Cisco 105]

e Parameters: this needs to be defined in the CLI command
e Variables:

o Name: the original variable name from the parser.

o Alias: the alias for this variable to appear in alert check. As multiple parsers may
include same variable name, you can use the alias to make the variable unique
when referencing them within the alert check section.

o Monitor: specify whether this variable will be monitored to determine if the
historical data can be tracked. In this case, as we want to keep track of the
historical data for CPU usage, we'll specify this as the monitoring variable.

- parser: "Built-in Files/Network Vendors/Cisco/Cisco I0S/show processes cpu [Cisco IOS]"
parameters: {}
variables:
- name: five min cpu usage
alias: five min cpu usage
monitor:
display name: five min cpu usage

unit: "s"

9) Define Rules: Define the alert rules in the rule section.
e Operand1: Stands for the variable needed to be checked

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 49

e Operator: Operator is the same as what can be defined using Ul. You can find from the Ul for
a complete list of operators and how to use them.

e Operand2: Stands for the threshold value you define for the variable. This field is omitted for
some of the operator types.

Define Alert Rules: Monitor Variables(1) Verify Table
A | [8] five_min_cpu_usage v | Greaterthanor Equalsto v 0 A o
B Select Variable v

Boolean Expression: | A

rule:
verify table: false
conditions:
- operandl: S$five min cpu usage
operator: GTE
operand2: 90

boolean expression: A
10) Alert message: Define the alert message that will be generated.

Run Feature Intent Template to create Flash Probes:

After defining the flash probe, you can run the feature intent template to generate the related flash probes. As
these probes are enabled according to the definition, you will see these variables are executed based on the
defined frequency. To view the results for these flash probes, you can open a map and use the monitoring
data view to see the probe execution results.

50 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

r

52 Mapl * > Pagel~ O ~ &' stendls | InstantQapp | Dashboard | Map | Actions | 0O = @ < 100% @ X

&« [Network Intent I m £2] Runbook Auto Refresh £\ Recent: 6/30/2012:30PM 5

7
Dynamic Monitor Static ~

Q ResetvView G =

& BosWAN ~ ﬁ 50/010.1.1.3/24 y __,;:3
« ¥ Device ‘\

Bos-WAN]
< 0 BGP neighbor down - 6/30/20 12:28 P 10.1.1.3/24
£ BGP uptime < 15 mins- 6/30/20 11:00 P
=] Up/down Time - 6/30/20 12:15 P
[=] Message Sent Count - 6/30/20 12:15 P
£\ OSPF neigbor down - 6/30/20 10:05 A
uptime < 15 mins - Not Executed
+ %2, Serialo/o "
£ Traffic Usage > 80% - 6/30/20 12:15 P g
[=] Inbound Traffic - 6/20/20 12:15 P e
[=] Outbound Traffic - 6/30/20 12:15 P E
N}
£ CRC error increase - Executed with Error &
]
» %, Serialo/1 ﬁ
b & Serial0/2 LA-WAN
b & Serialo/3
b %, Serialor4 Alert History X
b 8, Serialo/s wt Bos-WAN {\ BGP neighbor down MBookmark 1D 50 7D 300 Custom 5
b & Serial0/6
630201230 P
Flash Probe A a O O O a O a a a 'y
7
Total Count of all Triggered € 0 Py s »
Automations with Alert L . 3 3 . 3
L2 L g -
‘ Triggered Automations >
Show Logging | BGP | -

6.1.1.Creating Flash Probe for Interface Variable Check

We have explained how to create a primary flash probe for device level check, now let's take a look at how to
create a flash probe for interface variable check. In this example, we are trying to create a new interface level
flash probe to check if link error is increasing. And the design points are shown as below:

e Use show interface to retrieve the interface error for Cisco devices

e Primary flash probe that retrieves CLI command from live network every 30 minutes

e Alert will be raised if the number of the interface errors retrieved during the current polling cycle is
greater than that of the last polling cycle.

e We will only enable the check on interfaces that are in up status and at the same time filter loopback
interfaces that we are not interested in.

e Interface errors will be set as monitoring variable so the historical data can be tracked.

The sample YAML code is shown as below, we will explain details for each section:
- name: overall monitor interface link error check
description: "this is interface link error flash probe"
target type: Interface
target interface:

qualification: |-

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 51

Sdevice.subTypeName == "Cisco Router" && S$device.subTypeName == "Cisco IOS Switch" &é&
intf.isLoopback == false && $intf.intfStatus =="up/up"

split by interface: false
conflict mode: Skip # support values: Override and Skip, the default value is Skip
type: Primary # Primary or Secondary or External
trigger type: AlertBased
alert source: ""
frequency multiple: 16
variable defines:
- parser: "Built-in Files/Network Vendors/Cisco/Cisco IOS/show interface [Cisco IOS]"
parameters: {}
variables:
- name: intfs table.input error
alias: input error
monitor:
display name: input error
unit: ""
- name: intfs table.output error
alias: output error
monitor:
display name: output error
unit: ""
- compound variable: input link errors
value type: int
expression: S$input error - (last)
- compound variable: output link errors
value type: int
expression: $otput_error - (last)
rule:
verify table: false
conditions:

- operandl: $input link errors

52 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

operator: GT # 1. UseGB, 2...
operand2: 0
- operandl: Soutput link errors
operator: GT # 1. UseGB, 2...
operand2: 0
boolean expression: A or B

alert message: "exist input link errors or output link errors,,,"

enable: true

1) Target_type: As this case focuses on interface level error check, we'll use the interface level variable,
so we'll need to use interface to define Target type.

2) Target_interface: Use this field to specify the interfaces you want to check for errors. All interfaces
will be checked by default. If you would like to have all interfaces checked, you can leave this filed
empty. In our case we keep this field empty in order to check all interfaces.

You can also use the SubFl variables decoded so the system will create flash probe and include.
target type: Interface

target interface: $intfName

Suppose you use the line pattern to decode devices with interfaces that has OPSF configured, you can
further reference the sintf name in the flash probe so the created flash probe will only include the
OSPF interface status.

3) Qualification: Interface level check allows you to use interface properties. In this case as we want to
focus on the interfaces that are in up status and filter all loopback interfaces, we can achieve our goals
with the following statement.

Sdevice.subTypeName == "Cisco Router" && S$device.subTypeName == "Cisco IOS
Switch" && intf.isLoopback == false && $intf.intfStatus =="up/up

4) split_by_interface: For flash probe that may include multiple interfaces, you will need to decide
whether these interfaces should be grouped together into a single flash probe or separated into
different flash probes. In this case, as we’ want to use a single flash probe to include all these
interfaces, we set the value to false so the flash probe can include all the matched interfaces.

Primary Flash Probe Details X
Overall Health
|
Device Level ® InterfaceLevel SelectInterface v

Variables (0) +Add v
GigabitEthernet1/1/1
GigabitEthernet1/1/2
GigabitEthernet1/1/3
“ GigabitEthernet1/2/1
¥ GigabitEthernet1/2/2
Define Alert Rules: GigabitEthernet1/2/3

GigabitEthernet1/4/1

............... CiashitErharnat1 /410

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 53

5) Compound variable: In this case, as we need to calculate the error increase count, the value of
current errors status minus the value of error status retrieved last time. The compound variable can

achieve this with the following definition:
- compound variable: input link errors

value type: int

expression: Sinput error - (last)

Note: The last value can be referenced simply with (last).

6.1.2.Creating Flash Probe using Sub Fl variables

One of the most powerful function feature decoding provides is that the variables are reusable. We can
extract them from the configuration files, and then reuse them in other automation resources. In this section,
we'll see how to leverage the variables pared from the configuration files to use in flash probe. The following
example demonstrates the concept:

D)

R4

i~ ¥

10.245.33.1/24 10.245.34.1/24
AS65000

10.245,34.2/24

0.245.32.2/24
10.245.32.1/24

ASB5100 R2

10.245.33.2/24

10.45.31.2/24 §

gl 1024531 1/24

5001 AS65002

In the above example, we have devices with BGP connections configured under vrf and we want to make sure
the advertised routes don't change. In this case we can create flash probes to track the advertised route
change. The YAML file to decode the BGP config files is shown as below:

name: Internal Test Feature BGP - Training
version: 1.0

nwn

source:
nn

description:

tags: []

54 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

feature:
qualification: {}
configlet:
sample: ""
match rules:
- regexes: {}
patterns:
groupl: |-
interface $str:intfNamel
ip address $ip:ipl S$ip:maskl
group2: |-
MF: router bgp S$num:bgp
address family ipv4 vrf Sstr:vrf name
O: bgp log-neighbor-changes
F: neighbor $ip:ip2 remote-as S$num:remoteBGP
OE: neighbor $ip:ip3 update-source $str:intfName?2
split keys:
groupl: []
group2: [$fi.remoteBGP, $fi.vrf name, $fi.ip2]
relation: Equals ($fi.intfNamel, S$fi.intfName2) && Equals ($fi.ip2, S$fi.ip3)

merge groups: []

You can see that all devices with desired configlet will be matched. And the flash probe we are trying to create
is shown as below:

flash probes:
- name: BGP adv routes change {$fi.ip2} {$fi.vrf name}
display name: BGP_adv routes change {$fi.ip2} {$fi.vrf name}
target type: Device
qualification:
type: Primary

frequency multiple: 1

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 55

variable defines:
- parser: "Built-in Files/CLI Command/Cisco IOS/BGP_adv_routes [Cisco IOS]"
parameters:
vrf: $fi.vrf name
ip: $fi.ip2
variables:
- name: fi.BGP_ adv_route
alis: BGP adv route
monitor:
display name: bgp adv route table
rule:
verify table: false
conditions:
- operandl: $BGP adv_route
operator: UseGB
boolean expression: A
alert message: BPG advertised route change detected

enable: true

This example demonstrates the power of using line pattern to decode the configuration files and using the
variable in our flash probe definition. From the configuration files decode, we are able to get the BGP neighbor

IP address and corresponding vrf information for each neighbor, represented by the variables $ip2 and
Svrf name.

In this section, as we are trying to create flash probe for all bpg neighbors, each with a unique flash probe
name. To achieve that, we need to add the ip address and vr£ name into the name field.

The CLI command to parser the data is:
show ip bgp neighbors $ip advertised-routes vrf S$vrf

And the sample output is shown as below.

56 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Alg. Dest.Addr Mask Distance Metric Interface Next Hop IP ... Next Hop Dev... Age

104.207.208.... 27 0

104.207.208.... 28 0

104.207.208.... 29 0 104.207.208.... BUR12-LAB-F...
104.207.208.... 29 0 104.207.208.... BUR12-LAB-F...
172.16.8.0 22 100 169.254.241...

172.26.0.0 24 100 169.254.241....

172.85.32.40 29 0 104.207.208.... Burl2-bdf-fw...
199.188.232.0 22 0 172.16.1.99

We are able to assign these variables with the value parsed from configuration files. Following the golden
baseline concept, we automatically create baseline for the bgp-advertsied route table and generates alert if
needed.

6.2. Install Network Intent into Flash Probe

With the network intents we have created, we'll need to define how they should be executed, the feature
intent template provides you the method to install them into the flash probe. So when there’s alert generated
by the flash probe, the network intent diagnosis will be further executed.

In the following example, we are trying to achieve the network intent check based on flash probe:

e We have defined a network intent for HSRP check of active and standby devices.
e We have defined the flash probe to track the interface utilization.
o WAN link utilization for standby device should be less than 1%.

171.16.6.0/24
Host 1

R1# show run R2# show run
! !
interface Ethernet0 interface Ethernet0
ip address 171.16.6.5 255.255.255.0 || ip address 171.16.6.6 255.255.255.0
no ip redirects no ip redirects
standby 1 ip 171.16.6.100 standby 1 ip
standby 1 priority 115 standby 1 preempt
standby 1 preempt standby 1 track Seriall
standby 1 track Serial0

The purpose of this case is to track the WAN link utilization for standby devices periodically. If the traffic is
greater than the defined threshold, we'll trigger the network intent to check whether the HSRP failover
happens. To achieve this goal, we can define the flash automation as follows:

triggered automation:

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 57

- description: xxxx
automation:
network intents:
auto append created NI: true
triggered by flash probes:
- name: wan link ultilzation spike
alert source: NetBrain
qualification:
Sdevice.subTypeName=="Cisco Router"
note: Check bgp
trigger rule:
run_type: Once
frequency:
interval: 2
times: 3
suppression:
enable: true
wont run twice within: 2
enable: true # whether to enable, the default is true

conflict mode: Skip
The key fields are explained as below:

1) Automation: You can define the network intents by specifying the directory in NetBrain. If network
intents are created within this feature intent template, you can set the flag of
auto append createed NI as true to install the automation to specific flash probes.

In this case, we assume the network intent for HSRP check already created within this feature intent
template, so we keep it as true.

2) Triggered_by_flash_probes: Specify the flash probes you want to install to. The flash probe can be
created within this feature intent template or from other feature intent templates. In this case, as we
want the HSRP check to be triggered by wan 1ink ultilzation spike, we'll specify the flash probe
name here.

¢ Note: note shown in execution tree, usually indicates the reason why the network intent
checked based on flash probe alert.

e Trigger_rule: define how you would like the NI to be executed when there's flash alert, run
once or run multiple times.

58 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Execution Tree 0 F X

@ BST_POP2 v Incident: Select 07/05/21 11:00 AM - 07/12/21 11:33 AM

All Clicommand (1) | | EIGRP (1) ' | OSPF (1)
Show: (J AlertOnly O
~ Triggered by Current Device

A EIGRP Config Change Check EIGRP Design
07/07/21 04:37 PM ~

EIGRP Design Check

OSPF Config Change Check OSPF Design
————————— OSPF Design Check

07/07/21 04:51 PM v

CPU High Check Uptime
S CheckUptime

> >

07/07/21 02:56 PM ~

CRC Error Increase

=2

07/07/21 04:56 PM v

uptimes

>

07/12/21 11:26 AM v

Configuration Change

>

07/07/21 04:43 PM v

Schedule Network Intent

In addition to installing networking intent into an alert-based flash probe, you can also install the network
intent into a timer-based flash probe. That's basically the same concept as scheduling network intent. The
settings are the same as installing network intents into the alert-based flash probe, just that you will need the
timer-based flash probe to trigger the network intent.

6.3. View Triggered Intent Results

After defining the install automation contents and executing the FI template, you can view the execution
results right from there. All detailed information about how many automations and what automations are
installed can be easily found.

Define Template Execute & View Results

Run Now | [Schedule Run:

Last E; tion Time: 1/7/2)
astBxecution fime: Triggered Network Intent Tasks X
@® Last Execution Resu
3 Items ?\
Matched Devices:
Automation Type Automation Name Last Updated Time
1 Devices
Network Intent General HSRP8D499514E8159E80ECTAQ... 1/7/2021,11:00:11 AM
Associated Automation
Network Intent General HSRP3960F2897903C503C3F07... 1/7/2021,11:00:11 AM
0 Network Intents
0DataViewTemp | Network Intent General_HSRPCE666CACCBCA3BI1EG7E... 1/7/2021,11:00:11 AM
0 Runbook Templ
0 Flash Probes

0 Golden Baseline Variables

Installed Automation Tasks:
3 Triggered Network Intent Tasks
0 Scheduled CLI Tasks
0 Scheduled Data View Template Tasks

0 Installed Recommended Actions

To view the results of automation task themselves instead of Fl template you can use the execution tree to
view the results per device.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 59

Execution Tree 8 F X

@ BST_POP2 v Incident: Select 07/05/21 11:00 AM - 07/12/21 11:33 AM

Clicommand (1) | | EIGRP (1) | | OSPF (1) »

Show: (J Alert Only Q)

~~ Triggered by Current Device

EIGRP Config Change Check EIGRP Design §
1 A EIGRP Design Check (1]
07/07/21 04:37 PM v
OSPF Config Change Check OSPF Design [)
1 A OSPF Design Check 1]
07/07/21 0451 PM v 1

“#p . CPUHigh Check Uptime [)
g A ——— CheckUptime [1]
07/07/21 02:56 PM ~

n CRC Error Increase
A 07/07/2104:56 PM ~

*a uptimes
07/12/2111:226 AM ~

*a Configuration Change
07/07/21 04:43PM v

60 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

7. Create/Update Data View Templates

Data View Templates can be used to understand the network designs and running status. You can create data
view templates manually with the pre-defined qualifications so the data view templates can only be applied to
specific devices. The current qualification supports basic GDR properties which might limit the accuracy of
data view templates in some use cases.

With the Feature Intent qualification, you can match devices with the exact device feature and add these
devices to the schedule Data View Template tasks.

Runbook [l Network Intent Decision Tree

Dynamic Monitor Static Reset

EJ OsPF Overview - Result 1 Cache @@ Live L=

Tu0 10.99.1.
072 102,95 1730 1.51/24 -

SPF CLI Output

© Default Data View Tu0 10.99.1.52/24

CA-TOR-R1

4 7] Built-in Data View Templates - US-SMF-R1
4 1) Sample DVT 109514028) So
- Azure ¢ MPLS B it
[N
- . | P . -
[(Azure] Basic Info AS-‘ZBSOO
4 1 High Availability MP(s L3 VPN
[HSRP Overview . O / T+)
4 1 Quality of Service KMP“\ 1%8; A,H

[Qos Overview <
AS-30000
MPLS L3 VPN

4171 Routing

[P BGP Overview

[1P BGP Prefix Instance Tu0 10.8.1.65/

[Multicast Overview +)
o
OSPF Overview g
4 serny a9~ US-BOS-FW/act /
A | b
[Access List [Cisco 10S] 10.8.1.49 US-BOS-FW/stby
4 1 Switching Cisco ASA Firewall 108150 L

Cisco ASA Firewall 10.8.1.4 evice Interface

[Spanning Tree Overview W1\
[0 Spanning Tree VLAN Instance A UsBOSRI © HosOSPF:True (20 smmmm area: 0
A Infrastructure View ,\ 3 S — area: 21
[Network Table View 2 \ = area: 51
[Overall Health Check = N £ w— POt Channel Link

w— Trunk Link

s 2 Rarnmmended Actinas i Pletals |

One of the main problems resolved by Feature Intent template is how NetBrain service engineer can create
data view templates and apply them to different customers. Feature Intent Templates indeed provides the
natural way within NetBrain to define data view templates and adjust according to Network Change.

The following example shows how to define data view template and what functions of date view template are
supported:

o Define Qualifications: Define the qualification for this data view templates.

o Reference existing parser variables: You will need to reference existing parser variables already in
the system.

e Define recommended automations: You can define recommended automations for the current data
view templates.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 61

dataview_templates: # DVTs that need to create
- path: "»>Data Vview Templates>Public Data view Templates>xxxx"
drill down actions: # dvt level drill down action
- name: Basic Commands
type: CLI # support types: CLI, RunbookTemplate
commands: # cli commands
- "show verson”
- "show standby"
description: xxxx
name: Multicast Source Tree Health Check
type: RunbookTemplate # support types: CLI, RunbookTemplate
path: "Built-in Runbook Templates/Troubleshooting/Multicast Source Tree Health Check" # runbook template path
description: xxxx
filter_criteria:
device_types:
- Cisco I0S Switch
- Cisco Router
feature_names: #FID name

- XXXX
device_positions:
- parser: "Built-in Files/CLI Command/Cisco IOS/Version [Cisco IOS]"
variable: cpu
- parser: "Built-in Files/CLI Command/Cisco I0S/Interface [Cisco I0S]"
variable: intfs_table
index: 5 # the dataview position index, if not set, the positions are set in array order by default.
interface positions:
- interface_type: IPv4 Interface
positions:
- parser: "Built-in Files/CLI Command/Cisco I0S/Interface [Cisco I0S]"
variable: intfs table.status
index: 5

Refer to the table below for a full list of supported properties and definitions:

Properties Definition

path string Y full path of the Data View Template

node_type enum N In IE 10.0, node_type only supports Legacy.

In the future, we will consider more node types
including:

e Fabric Node.

e EPG

e Bridge Domain
e VRF

e L20ut

. L30ut

e Contract

e Cluster Virtual Standard Switch

e Virtual Standard Switch

e Vmware Distributed Virtual Switch
e eftc.

drill_down_actions In IE 10.0, we only support

object N

e Execute CLI Commands.
e Runbook Template.

62 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

drill_ down_actions.commands

drill_down_actions.runbook_te

mplates

filter_criteria

filter_criteria.device_types

filter_criteria.feature_names

device_positions

device_positions.parser

device_positions.variable

device_positions.index

interface_positions

interface_positions.interface_t
ype

interface_positions.positions

interface_positions.positions.p
arser

interface_positions.positions.v
ariable

list -
string

list -
string

object

list -
string

string

object

string

string

enum

object

enum

object

string

string

Show command.

Full path of runbook template.

Filter Criteria,
see https://www.netbraintech.com/docs/ie100a/h

elp/index.html?advanced-search.htm#dynamic-
search for more details

Device Type name list:
e Cisco I0S Switch
e (Cisco Router
e All device type name, please see 10.

Device Type Name

Match GDR property: "_nb_features"

Parser path

Variable name

Data view position: 0, 1, 2 or 3, ...19.

e |Pv4 Interface

e Interface

e |Pv6 Interface

e |Psec VPN Interface
e GRE VPN Interface

Parser path

Variable name

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 63

https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
https://www.netbraintech.com/docs/ie100a/help/index.html?advanced-search.htm#dynamic-search
http://confluence.netbraintech.com/confluence/display/SDNA/10.+Device+Type+Name
http://confluence.netbraintech.com/confluence/display/SDNA/10.+Device+Type+Name

interface_positions.positions.i enum N Data view position: 0, 1, 2 or 3, ...23.
ndex

7.1. Creating Data View Template based on FIG

Besides creating the FIT level Data View Template, you can create more specific Data View Templates based on
FIG level resources and also use the parameters decoded from that FIG to generate more specific network
designs.

The sample YAML file shown below can be used to create FIG level Data View Template:
dataview templates: # DVTs that need to create
- path: ">>Data View Templates>Public Data View Templates>xxxx {Sfi.eigenl}"
create for level: FIG # FIG or Global, the default is Global
ref label: "refLabell"
tags: [BGP, HSRP]
default data source:

type: LiveRegularly # LiveOnce, LiveRegularly, CurrentBaseline, the default is
CurrentBaseline

frequency: # for LiveRegularly
every: 2 # unit is minute

repeat times: 3 # repeat run times, if null means no repeat

You will need to specify create for level to create resources at FIG level. You can create multiple data view
templates based on multiple FIGs you have.

As these Data View Templates need to have different names, you will need to use the sub Fl variable to
differentiate them. The recommended method is to use the eigen variable for cross relationship, as itis the
unique key for each FIG.

- path: ">>Data View Templates>Public Data View Templates>xxxx {S$fi.eigenl}"

The benefits of creating FIG level Data View Template as well as other resources is that you can easily leverage
the SubFl variables in these automation assets.

For the data view template, you can use the SubFl variables in multiple areas, but please make sure the value
of SubFl variable for each FIG needs to be unique and there’s no conflicting value within a single FIG. If the
value of sub Fl is not unique within a FIG, NetBrain will only be able choose the first one, which may not be
your intended one.

64 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

e Input_Variables: The input variables (if required by the selected parser). The Fl variable can be used to
set the value for the input variable.

input variables:
- type: ParserParameter
parser: "Built-in Files/CLI Command/Aruba WLC/IP Interface Brief [Aruba WLC]"
parameters:
- name: paral
value: (S$fi.eigenl+2)
allow manual input: false # the default is false
- name: para?2
value: $fi.eigen?
- name: para3

value: "\"GDR:S$vlan\""

e Device Position: the Fl variable can be used in device position to show sub Fl level specific value in
different Data View Templates generated by respective FIG.

device positions:
- parser: "Built-in Files/CLI Command/HP ProCurve Switch/NTP Status [HP ProCurve Switch]"
variable: sntp mode
- type: Text # Text or ParserVariable, the default is ParserVariable
title: "ospf: {$fi.varl}"™ # GDR property name, not display name
content: XXXXXXXxXxXxXXXXX{$fi.varl}xx
Drill Down CLI Command: You can use FI variable in drill down command.
- name: Basic Commands
type: CLI # support types: CLI, RunbookTemplate
commands: # cli commands
- "show verson"

- "show standby {$fi.xxxx}"

Please also note that you can use the FIG level Network Intent by creating FIG level Data View Template. To
attach only FIG level Network Intent as the drill down actions of Data View Template, set the following
parameter as true.

drill down actions: # dvt level drill down action

- auto_append created NI for same FIG: true # the default is false

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 65

8. Create/Update Runbook Template

Runbook Template can be used to organize the troubleshooting steps based on certain troubleshooting
scenarios. Currently you can use the Runbook Template to create the following node types:

e Data View Template

* Qapp

e Overall Health Monitor Qapp: The Overall Health Monitor Qapp which can help you understand the
running status and alert you if certain threshold is reached.

e Overall Health Monitor DVT: The Data View Template which can help you understand the running
status for all technologies, across traditional devices, SDN and Cloud network.

o CLI

To create the Runbook Template, first you will need to specify the basic parameters as shown in the following
YAML file:

runbook templates:
- path: "Shared Runbook Templates/{$fit.currentDomain}/xxx {S$fi.eigenl}"
create for level: FIG # FIG or Global, the default is Global
ref label: "refLabell"
tags: [BGP, HSRP]
qualified devices: # support all the GDR properties that ES supports
dynamic_ search:
conditions:
- property: subTypeName
values: [Cisco IOS Switch]
- property: name
operator: Contains # support types: Contains, Match, NotCotrains, NotMatch
values: "BJ"
boolean expression: A and B
static_include:
auto append matched devices: false # the default is false
devices: [R1l, R2]
qualification: $fi.xxx !="xxxxx"
static exclude:
auto append matched devices: false # the default is false

devices: [R3, R4]

66 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

T}

qualification: $fi.xxx =="xxxxx1"

The path represents the directory where you want to put these runbook templates. The resource level you are
creating may vary according to different use cases (similar to Data View Template):

e Global: Global means within current FIT, we only create one single Runbook Template. In this case, you
will need to specify the Runbook Template name without any Fl variables.

e FIG Level: This means for each FIG, we will create corresponding Runbook Template, in this case, you
will need to specify the Runbook Template name with the Fl variable name to create different RBTs.
Since these resources are related to these specific devices which reside in the current domain, you
may want to create a folder (so these resources can remain in the current domain name) by specifying

the following path to create resources:
-path:"Shared Runbook Templates/{$fit.currentDomain}/xxx_{$fi.eigenl}"

You can define the pre-qualification for the current Runbook Template with the dynamic search and also the
static include/exclude statements.

If you are creating Global level resources, you can usually specify the pre-qualification with the dynamic search
criteria by using GDR properties.

If you are creating FIG level resource, you should specify the pre-qualification with the static devices that has
been matched to achieve decisive match. This can be achieved by setting the auto append matched devices
field to true.

qualified devices: # support all the GDR properties that ES supports
dynamic search:
static_include:
auto_append matched devices: true # the default is false
devices: [R1l, R2]

qualification: $fi.xxx !="xxxxx"

Let's further take a look at how you can create different node types in the next three sections.

8.1. Adding DVT Node into RBT

Based on whether you are creating global level or FIT level Runbook Template, you have the option to attach
the Data View Templates.

e Global Level: If you are creating global level Runbook Templates, you have the option to attach all DVTs

created within the current FIT by using the following statement:
—auto_append created DVT:true# Whether to automatically add the created RBT by this
FIT, the default is false

And also you can reference different Data View Templates by using their paths:
path:">>Data View Templates>Built-in Data View Templates> Built-in Data for LWAP"

e FIG Level: If you are creating FIG level Runbook Templates, you can attach the DVTs that are also

created by the same FIG by using the following statement:
-—auto_append created DVT for same FIG:true

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 67

8.2. Adding Qapp Node into RBT

Adding Qapp into the RBT is quite straightforward. As currently you cannot create Qapp within the FIT directly,
you can reference an existing Qapp with its path.

- type: Qapp # support types: DataviewTemplate, CLI, Qapp, OverallHealthMonitor,
OverallHealthView

path: "Built-in Qapp/Qappl"

name: Qappl

qualified devices: # optional
dynamic_ search: ~
static_include: ~

static exclude: ~

8.3. Adding CLI Node into RBT

If the current RBT is created based on FIG, you can reference Fl variables and use it in the CLI Command as
shown in the sample below:

- type: CLI
name: Command List
auto append feature commands: true #
commands :
- show version
- show interface
- "show standby {S$fi.xxxx}"
qualified devices: # optional
dynamic search: # support all the GDR properties that ES supports
conditions:
- property: subTypeName
values: [Cisco IOS Switch]
- property: name

operator: Contains #

68 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

Tip: You can also define the pre-qualification for this CLI node.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 69

9. Create/Update Guidebook

Decision tree can help you create different guidebooks based on your troubleshooting scenarios. For more
information about the decision tree and how to use guidebooks via Ul, please refer to the document:
Guidebook Feature Summary

off Decision Tree — O X
Target: 7 Devices ¥ Guidebook: Check eigrp essential as_number- (100) v Filter: No Filter v O =

check eigrp essential status

All) | EIGRP(5) 105 (1) »

jeo,

5 Automations Added

~~ Data View Template

EIGRP Essential
v Check EIGRP Essential

v EIGRP [Cisco 105] EIGRP [Cisco 10S]

~~ Hypothesis

Check EIGRP Design Network
EIGRP_Design_as_num...

Legend

You can use YAML to define Guidebook and organize the related automation assets. Similar to Data View
Template and the Runbook Template, there are 2 methods to create Guidebook:

e Global: create guidebook globally based on current FIT.
e FIG: create guidebook based on the FIG matched.

You can use the create for level parameter to create resources based on your needs.
- name: guidebookl under ({ $fig.GetDeviceNamesStr () })

create for level: FIG # FIG or Global, the default is Global

You can also define the pre-qualification for the matched devices, the logic here is similar to what's shown in
Data View Template and Runbook Template section earlier:

qualified devices: # support all the GDR properties that ES supports
dynamic_search:
conditions:
- property: subTypeName
values: [Cisco IOS Switch]
— property: name

operator: Contains # support types: Contains, Match, NotCotrains, NotMatch

70 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

https://www.netbraintech.com/docs/ie100a/help/index.html?decision-tree.htm

values: "BJ"
boolean expression: A and B
static_include:
auto append matched devices: false # the default is false
devices: [R1l, R2]
qualification: $fi.xxx !="xxxxx"
static_exclude:
auto append matched devices: false # the default is false

devices: [R3, R4]

If you create the Guidebook globally, you will need to define the qualification based on the GDR or static
devices that have been matched. If you create the Guidebook based on FIG, it's recommended to define the
pre-qualification with static include statement to achieve precise match. So, when you open a match with
devices, only the qualified guidebooks will be shown for the easy troubleshooting purpose.

The following two types of automations can be added to guidebooks:

e Data View Template
e Hypothesis

9.1. Adding DVT Node into Guidebook

Based on whether you are creating global level or FIT level Runbook Template, you have the option to attach
the Data View Templates.

e Global Level: If you are creating global level Runbook Templates, you have the option to attach all DVTs

created within the current FIT by using the following statement:
—auto append created DVT:true# Whether to automatically add the created RBT by this
FIT, the default is false

And also you can reference different Data View Templates by using their paths:
path:">>Data View Templates>Built-in Data View Templates> Built-in Data for LWAP"

e FIG Level: If you are creating FIG level Guidebooks, you can attach the DVTs that are also created by

the same FIG by using the following statement:
-—auto_append created DVT for same FIG:true

9.2. Adding Hypothesis into Guidebook

When you add hypothesis into Guidebook, you will also need to specify what automation resources are to be
added based on the hypothesis.

e RBT: add RBT to be associated with the defined hypothesis.

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 71

e NI: add NI to be associated with the defined hypothesis.

Similar to the way you are adding DVT into the Guidebook, you have the option to attach FIG or FIT level
resources to the Hypothesis:

e Global Level: If you want to add these RBTs and NIs into the Guidebook, you can use the following

methods:

auto_append created NI:True# Whether to add all the created NI by this FIT, the default
is false

auto_append created RBT: True# Whether to add all the created RBT by this FIT, the
default is false

Also, you can add static Network Intents and Runbook Templates with their paths.
network intents:
"HSRP/General HSRP1" # static NI
runbook templates:

- "Built-in RBTs/BGP/General HSRP" # static RBT

e FIG Level: Ifit's FIG Level Guidebooks, you can attach the FIG level Network Intents and Runbook

Templates.

auto append created NI for same FIG:true# Whether to add the created NI for same FIG,
only for create for level=FIG, the default is false

auto append created RBT for same FIG:true# the default is false

72 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

10. Scheduling Feature Intent Template

Network is dynamic as network changes constantly occur. To make sure the automation resources and tasks
created by feature intent template are up to date, you can schedule the feature intent template to run
periodically.

The system provides the option to run feature intent template daily/weekly/monthly, and you can define the
proper frequency according to the network feature change frequency.

During the execution of the schedule task, the system will check the latest data and update the resources
accordingly, and it will also remove any obsolete resources.

Feature Intent Template Manager

search... Q) Refresh MName: EIGRP Essential - [Cisco 10S] Description: EIGRP Essentail for Cisco 10S
4[] Built-in Feature Intent Template (10) Define Template Execute & View Results
4 7] Cisco 105 (4)
¥ EIGRP Essential - [Cisco 105] Run Now 1] | O Schedule Run: v

¥ BGP Essential - [Cisco 105]
¥ OSPF Essential - [Cisco 10S] Last Execution Time: 7/12/2021, 8:52:24 AM (Manual Task) View Last Execution Logs (Succeeded)

. HSRP Essential - [Cisco [0S
L ! @ Last Execution Results O All Execution Results

4171 samples (8)

@ Network Intent by template
Matched Devices:

@ Triggered Automation
7 Devices
& Network Intent by Diagnose
@ Schedule CLI Samples Associated Autormnation Assets:
@ GuideBook_Flow_Samples 3 Network Intents
@ Flash Probe - Cisco 105 1 Data View Templates
4[] Shared Feature Intent Template (6) 1 Runbook Templates
b B JTest (1) 0 Flash Probes

The execution time of schedule task can be found from the top right corner. All the feature intent templates
defined with the same frequency will run at the same time to ensure all resources are updated.

Time Zone: | (UTC-05:00) Eastern Time (US & Canada) v @
Daily
Every |1 Days
IstStartTime: | 12w 1/ 00w AM | UseCurrentTime
+ New Start Time
Weskly
Every |1 weeks on.
] Sunday Monday [Tuesday (] Wednesday [J Thursday () Friday (] Saturday
StartTime: |12+ z 00w | AM v | UseCurrent Time
Manthly
Doy |1 on the manth:
January [February 0 March
0 April 0 May () June
O July [August () September
0 October [November [December
StartTime: | 12w 100w AM | UseCuentTime

NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial | 73

11. More Functions Provided with Feature Intent Template

In this tutorial, we have covered the main functions of feature intent template and how it can help to scale the

entire reference workflow. The list below enumerates all the other resources that can be created by feature

intent template.

1. Automation assets can be created:

Flash Probe
Network Intent
Data View Template
Runbook

Golden Baseline

Guidebook

2. Automation assets can be installed to run:

Network Intent triggered by Flash Probe

Schedule Network Intent (triggered by timer-based Flash Probe)
Schedule Data View Template

Schedule Parser

Schedule CLI

For complete guide on how to create all these resources, please refer to the Feature Intent Template Online

Help.

74 | NetBrain Integrated Edition 10.0a Feature Intent Template Tutorial

https://www.netbraintech.com/docs/ie100a/help/index.html?fid-yaml.htm
https://www.netbraintech.com/docs/ie100a/help/index.html?fid-yaml.htm

	1. Introduction
	2. FI Template Main Execution Flow
	3. Understanding Feature Decode using YAML File
	3.1. Test Feature Decode Result using Feature Intent Template
	3.2. Line Pattern Match Logic
	3.3. Device Qualification Basics

	4. Understanding Different Components of FIT
	4.1. Sub Feature Intent Introduction
	4.2. Generate FI Group for Multiple Devices
	4.3. Resource Generation Logic
	4.4. Reference Variables of Different Levels

	5. Create Network Intent
	5.1. Generate Default Network Intent
	5.2. Create Network Intent Directly
	5.2.1. Referencing Visual Parsers
	5.2.2. Cross Device Analysis in Network Intent

	5.3. Using Network Intent Template
	5.3.1. Define Network Intent Parameters in Feature Intent Template

	5.4. Generate Network Intents via NI Template

	6. Building Intent-based Automation via Feature Intent Template
	6.1. Creating Flash Probe
	6.1.1. Creating Flash Probe for Interface Variable Check
	6.1.2. Creating Flash Probe using Sub FI variables

	6.2. Install Network Intent into Flash Probe
	6.3. View Triggered Intent Results

	7. Create/Update Data View Templates
	7.1. Creating Data View Template based on FIG

	8. Create/Update Runbook Template
	8.1. Adding DVT Node into RBT
	8.2. Adding Qapp Node into RBT
	8.3. Adding CLI Node into RBT

	9. Create/Update Guidebook
	9.1. Adding DVT Node into Guidebook
	9.2. Adding Hypothesis into Guidebook

	10. Scheduling Feature Intent Template
	11. More Functions Provided with Feature Intent Template

